

EECI-IGSC Course Networked Model Predictive Control for Multi-Vehicle Decision-Making

Dr.-Ing. Bassam Alrifaee | Patrick Scheffe, M. Sc. 2021

Part 1 Introduction

#### **Your instructors**



Bassam Alrifaee <u>alrifaee@embedded.rwth-aachen.de</u> Lectures



Patrick Scheffe <u>scheffe@embedded.rwth-aachen.de</u> Lab, Organization

2 Networked Model Predictive Control for Multi-Vehicle Decision-Making Part 1: Introduction | Dr.-Ing. Bassam Alrifaee



- Founded 1870
- Largest technical university in Germany
- 45.000 students, 6.500 graduates per year
- >20% international students, from 128 countries
- 9500 staff, 540 professors
- 900 million € expenditure

Part 1: Introduction | Dr.-Ing. Bassam Alrifaee

- >400 million € third party funding (biggest amount in Germany, in total and per professor)
- Highest number of alumni as CEOs in DAX companies





### Nine schools ("Fakultäten"):

- **1** Natural Sciences, Computer Science, and Mathematics
- 2 Architecture
- 3 Civil Engineering
- 4 Mechanical Engineering
- 5 Mining and Materials
- 6 Electrical Engineering
- 7 Philosophy
- 8 Economics

10 Medicine

5 Networked Model Predictive Control for Multi-Vehicle Decision-Making Part 1: Introduction | Dr.-Ing. Bassam Alrifaee



| 1 | Natural Sciences, Computer Science, and Mathematics |                                                                                                             |  |  |  |
|---|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
|   | Biology                                             |                                                                                                             |  |  |  |
|   | Chemistry                                           |                                                                                                             |  |  |  |
|   | <b>Computer Science</b>                             | <ul> <li>~ 3500 students</li> <li>&gt; 450 graduates</li> <li>~ 30 Professors</li> </ul>                    |  |  |  |
|   | Mathematics                                         |                                                                                                             |  |  |  |
|   | Physics                                             |                                                                                                             |  |  |  |
| 4 | Mechanical Engineering                              | <ul> <li>~ 10.000 students</li> <li>~ 2.000 graduates, 200 PhDs in 2014</li> <li>~ 60 Professors</li> </ul> |  |  |  |



#### **Computer Science**

| Computer Science |    |                            |  |  |  |
|------------------|----|----------------------------|--|--|--|
|                  | 1  | Algorithms                 |  |  |  |
|                  | 2  | Software Theory            |  |  |  |
|                  | 3  | Software Engineering       |  |  |  |
|                  | 4  | Distributed Systems        |  |  |  |
|                  | 5  | Information Systems        |  |  |  |
|                  | 6  | Speech Recognition         |  |  |  |
|                  | 7  | Logics and Automata        |  |  |  |
|                  | 8  | Computer Graphics          |  |  |  |
|                  | 9  | Data Mining                |  |  |  |
|                  | 10 | Human Computer Interaction |  |  |  |
|                  | 11 | Embedded Software          |  |  |  |
|                  | 12 | High Performance Computing |  |  |  |
|                  | 13 | Computer Vision            |  |  |  |



#### Informatik 11 - Embedded Software (i11)



https://embedded.rwth-aachen.de

8 Networked Model Predictive Control for Multi-Vehicle Decision-Making Part 1: Introduction | Dr.-Ing. Bassam Alrifaee





## Informatik 11 - Embedded Software (i11)

- Head: Prof. Stefan Kowalewski (since 2003)
- Ca. 20 researchers, 4 non-academic employees, 5 apprentices
- > 1.600 students per year in our courses
- Ca. 40 graduates per year (15 Bachelor and 25 Master)
- Spin-off companies in the last five years

## Informatik 11 - Embedded Software (i11)

**Biomedical Systems** (5 researchers)

- Head: Dr. André Stollenwerk
- Supervision of medical devices

Data analysis

## Cyber-Physical Mobility (7 researchers)

- Head: Dr. Bassam Alrifaee
- Networked control systems
- Service-oriented architectures

Formal Methods (4 researchers)

- Head: Marcus Völker, M. Sc.
- Verification of CPS
- Application: industry automation



## **Profile of Cyber-Physical Mobility Group**







#### **Members of Cyber-Physical Mobility Group**



- 23 Master's and Bachelor's students
- 6 students in Team GalaXIs (our student team participating at Carolo-Cup)



# **Participants**

Shortly introduce yourself, e.g., with your ...

Name

Topic

Progress

Motivation/Expectation

![](_page_13_Picture_6.jpeg)

**CPM Lab Visit** 

#### **CPM Lab virtual visit**

![](_page_15_Figure_1.jpeg)

https://cpm.embedded.rwth-aachen.de/

![](_page_15_Picture_4.jpeg)

#### **Movie of 150 years of RWTH**

## https://youtu.be/RBuqHPCQPGo?t=428

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_4.jpeg)

#### **CPM Lab motivation**

#### Lab-Vision: See your ideas develop into reality!

![](_page_17_Figure_2.jpeg)

![](_page_17_Picture_3.jpeg)

![](_page_17_Picture_4.jpeg)

**Simulation** Test your ideas in a simulation environment

**CPM Lab** See your ideas work in a model-scale testing platform Real World Apply your ideas to real world scenarios

https://cpm.embedded.rwth-aachen.de

![](_page_17_Picture_9.jpeg)

![](_page_17_Picture_10.jpeg)

## **CPM Lab main features**

### **Open source, remotely accessible platform**

- Open code, plans, and documentation
- Remote access via web

## **Rapid algorithm prototyping**

- 20 networked model-scale vehicles (µCars)
- Centralized and distributed computations

## Hierarchical service-oriented architecture

- High- for complex computations, mid- and low-level
- Middleware for data exchange and synchronization

![](_page_18_Figure_10.jpeg)

![](_page_18_Picture_11.jpeg)

![](_page_18_Picture_12.jpeg)

#### **CPM Lab architecture**

![](_page_19_Figure_1.jpeg)

![](_page_19_Picture_3.jpeg)

![](_page_20_Picture_0.jpeg)

https://cpm.embedded.rwth-aachen.de/

**Course Logistics** 

#### **Course contents**

- Vehicle models
- Control and optimization
- Network and distribution
- Software architectures and testing concepts

- Course materials will be posted on Sciebo
- Lab will allow you to apply techniques on real model-scale vehicles

![](_page_22_Figure_7.jpeg)

![](_page_22_Picture_9.jpeg)

#### Lab – apply techniques from lectures

![](_page_23_Figure_1.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_23_Picture_4.jpeg)

## Logistics

- Lecture style
  - Presentation
  - Group discussions

## Participation

- Attendance list
- Prize for lab work
  - Donation of 15€ per working solution for a good cause
  - Invitation of best solution for a week
- Diagnostic test results

![](_page_24_Picture_10.jpeg)

| EECI IGSC   | 2021 On                 | line        |                                   | Module M05     |              |  |
|-------------|-------------------------|-------------|-----------------------------------|----------------|--------------|--|
| 15.03       | .2021-19.03             | 8.2021      | Bassam Alrifaee & Patrick Scheffe |                |              |  |
| UTC+01:00   | Monday                  | Tuesday     | Wednesday                         | Thursday       | Friday       |  |
| 09:00-9:30  | Introduction            | Control     | Network                           | Lab: DMPC      |              |  |
| 9:30-10:00  | introduction            |             |                                   |                | Control      |  |
| 10:00-10:30 | Models                  |             |                                   |                |              |  |
| 10:30-11:00 | Break                   | Break       | Break                             | Break          | Break        |  |
| 11:00-11:30 |                         | Lab: Basics | Lab: CMPC                         | Lab: DMPC      | Presentation |  |
| 11:30-12:00 | Models                  |             |                                   |                |              |  |
| 12:00-12:30 |                         |             |                                   |                | Wrap-up      |  |
| 12:30-13:00 |                         | Break       | Lab: Team Work                    |                | Assessment   |  |
| 13:00-13:30 | Break                   |             |                                   |                | Certificates |  |
| 13:30-14:00 |                         |             |                                   |                |              |  |
| 14:00-14:30 |                         | Network     |                                   |                |              |  |
| 14:30-15:00 | Architectures           |             |                                   | Lab: Team Work |              |  |
| 15:00-15:30 |                         |             |                                   |                |              |  |
| 15:30-16:00 | Break                   | Break       |                                   |                |              |  |
| 16:00-16:30 |                         |             |                                   |                |              |  |
| 16:30-17:00 | 16:30-17:00 Lab: Basics |             |                                   |                |              |  |
| 17:00-17:30 |                         |             |                                   |                |              |  |

| 19:00-21:00 |         | Social Event |  |
|-------------|---------|--------------|--|
| Lecture     | CPM Lab |              |  |

26 Networked Model Predictive Control for Multi-Vehicle Decision-Making Part 1: Introduction | Dr.-Ing. Bassam Alrifaee

![](_page_25_Picture_4.jpeg)

## **Some Terms**

### Levels of automation

## SAE J3016 from Society of Automotive Engineers (SAE)

- Level 0
- Level 1 ("hands on")
- Level 2 ("hands off")
- Level 3 ("eyes off")
- Level 4 ("mind off")
- Level 5 ("steering wheel optional")
- US National Highway Traffic Safety Administration (NHTSA)
- German Federal Highway Research Institute (BASt)

![](_page_27_Picture_10.jpeg)

## **Definition of networked vehicles**

- Also called connected
- Vehicle-to-X communications
- Consists of interacting vehicles
- Contribution to better
  - Perception
  - Decision-making
- Many challenges arising from computation time and communications
  - Feasibility
  - Quality

![](_page_28_Picture_10.jpeg)

### **Next Part**

#### **Vehicle models**

- Longitudinal models
- Lateral models

![](_page_30_Picture_3.jpeg)