

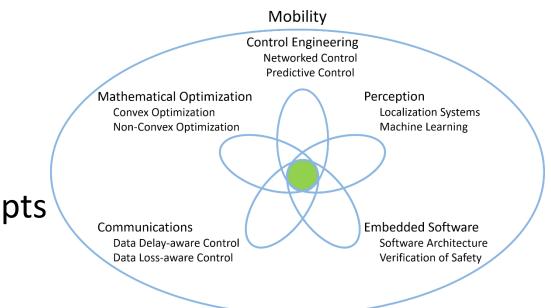
EECI-IGSC Course Networked Model Predictive Control for Multi-Vehicle Decision-Making

Dr.-Ing. Bassam Alrifaee | Patrick Scheffe, M. Sc. 2021

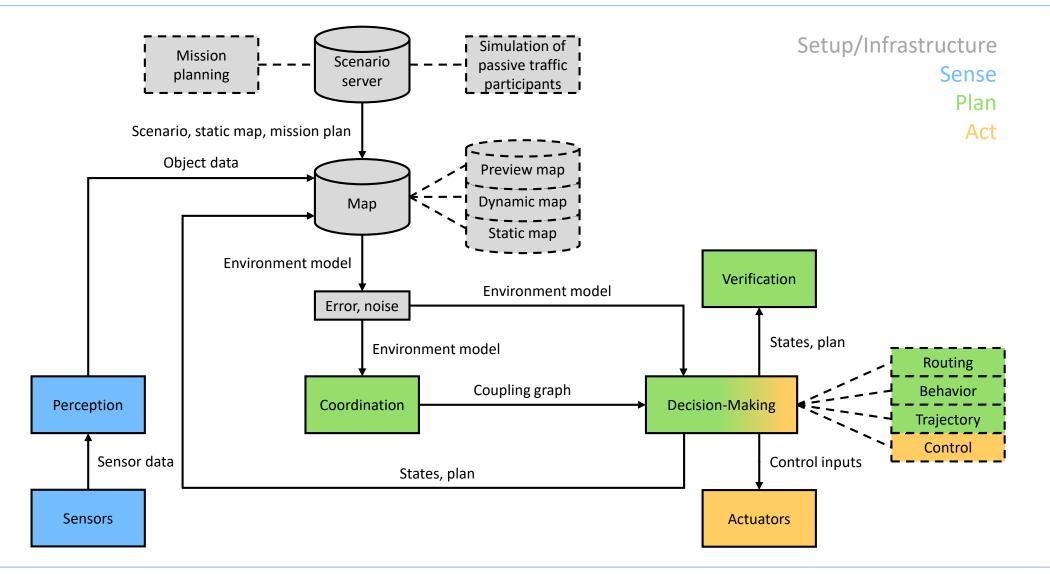
Part 4 Network and Distribution

Course contents

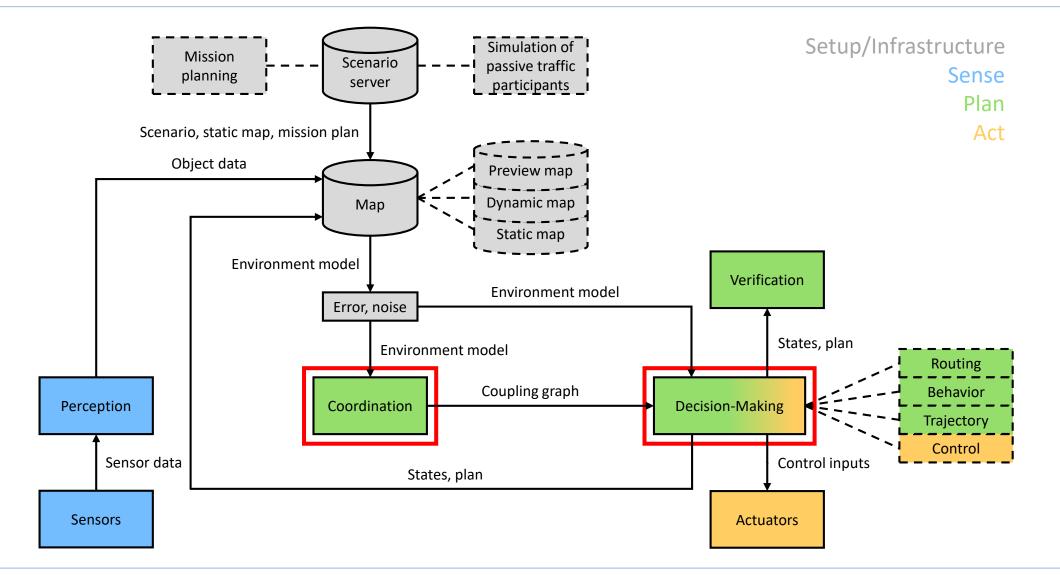
- Dynamic vehicle models
- Control and optimization
- Network and distribution
- Software architectures and testing concepts



CPM Lab architecture



CPM Lab architecture



Literature

J. Lunze. Control Theory of Digitally Networked Dynamic Systems. Springer, 2014.

Further literature (1)

J. Lunze. Networked Control of Multi-Agent Systems. Bookmundo Direct, 2019

Further literature (2)

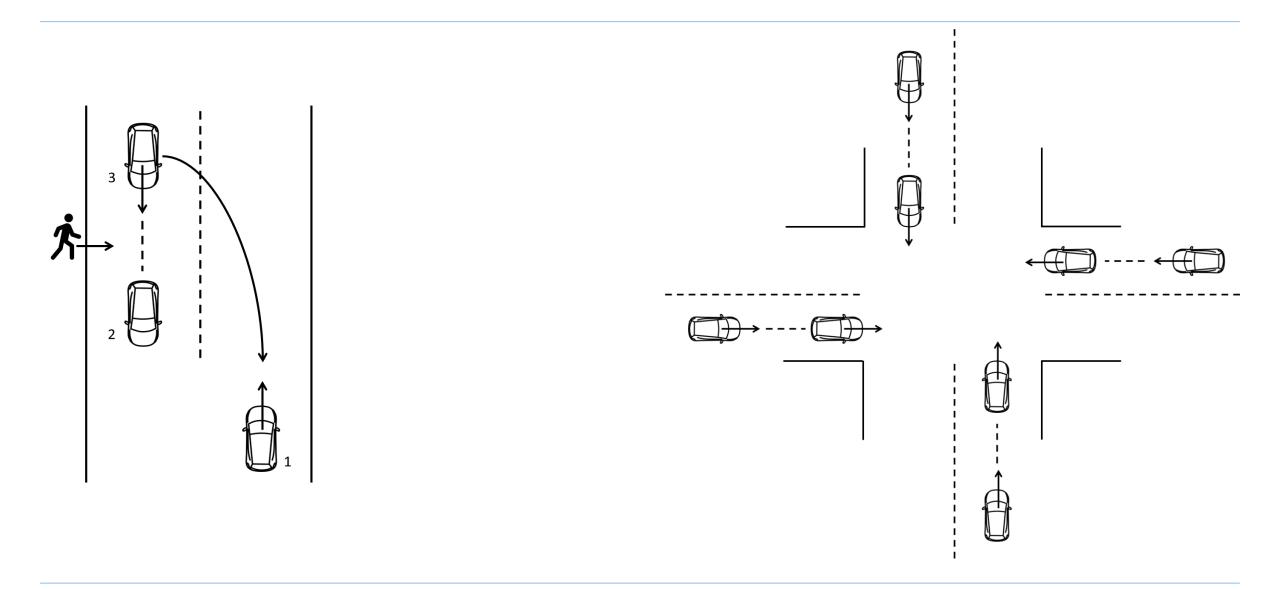
- B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD thesis, RWTH Aachen University, 2017.
- B. Alrifaee, F. J. Heßeler, and D. Abel. Coordinated Non-Cooperative Distributed Model Predictive Control for Decoupled Systems Using Graphs. In IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys), 2016.
- M. Kloock, L. Kragl, J. Maczijewski, B. Alrifaee, and S. Kowalewski. Distributed Model Predictive Pose Control of Multiple Nonholonomic Vehicles. In IEEE Intelligent Vehicles Symposium (IV), 2019.
- M. Kloock, P. Scheffe, S. Marquardt, J. Maczijewski, B. Alrifaee, and S. Kowalewski. Distributed Model Predictive Intersection Control of Multiple Vehicles. In IEEE Intelligent Transportation Systems Conference (ITSC), 2019.
- M. Kloock, P. Scheffe, L. Botz, J. Maczijewski, B. Alrifaee, and S. Kowalewski. Networked Model Predictive Vehicle Race Control. In IEEE Intelligent Transportation Systems Conference (ITSC), 2019.
- B. Alrifaee. MATLAB Simulation of Networked Model Predictive Control for Vehicle Collision Avoidance, 2017. Available: <u>https://doi.org/10.5281/zenodo.1252992</u>

Definition of networked systems

- Also called connected
- Communications
- Consist of interacting systems
- Contribution to better
 - Perception
 - Decision-making

- Many challenges arising from computation time and communications
 - Feasibility
 - Quality

Examples of contribution to better perception and decision-making



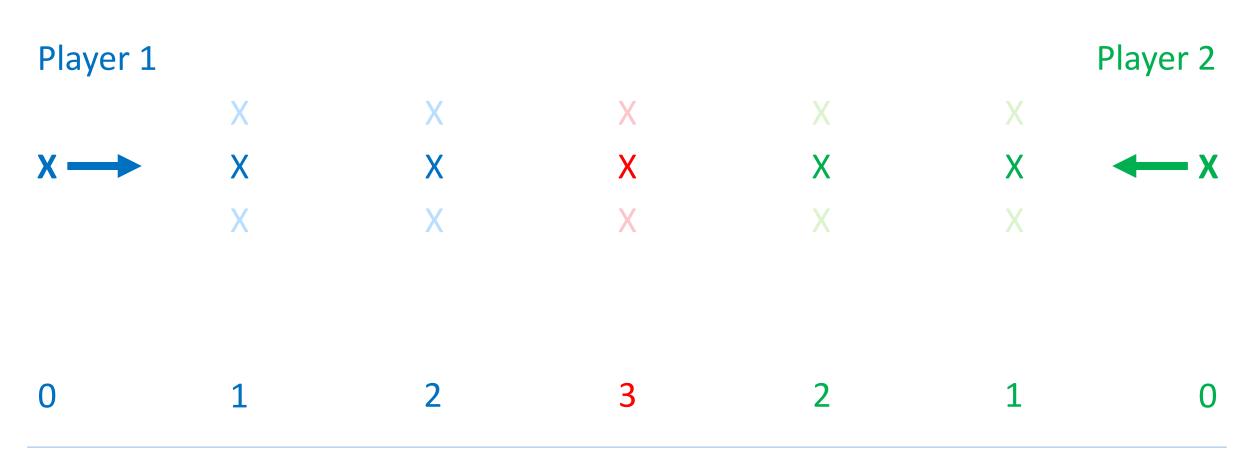
Pedestrians walking as networked MPC

Pedes	strians walking	Networked MPC
Task	Follow the line	Reference
	Act as little as possible	Control input
	Consider physical and logical limits	Constraints
Plan	Use discrete model to anticipate your free movement for 2 steps	Predict, prediction horizon
	Consider your physical (body) limits	Model as a constraint
	 Consider physical and logical limits of your Action Position Orientation Do not collide with each other 	Inputs' and states' constraints
	Plan your action for 1 step	Control horizon

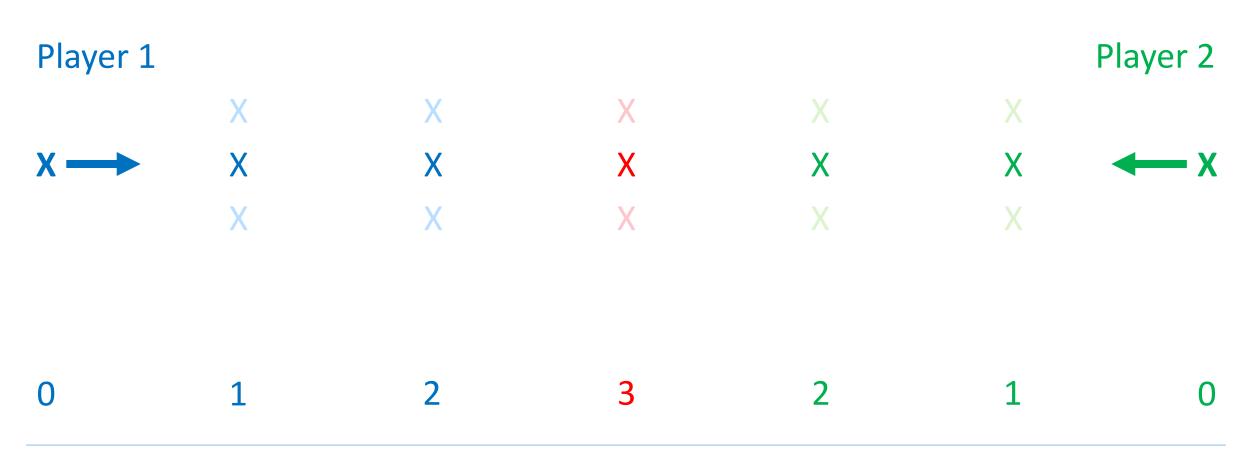
Objective function

Plan, communicate plan, act

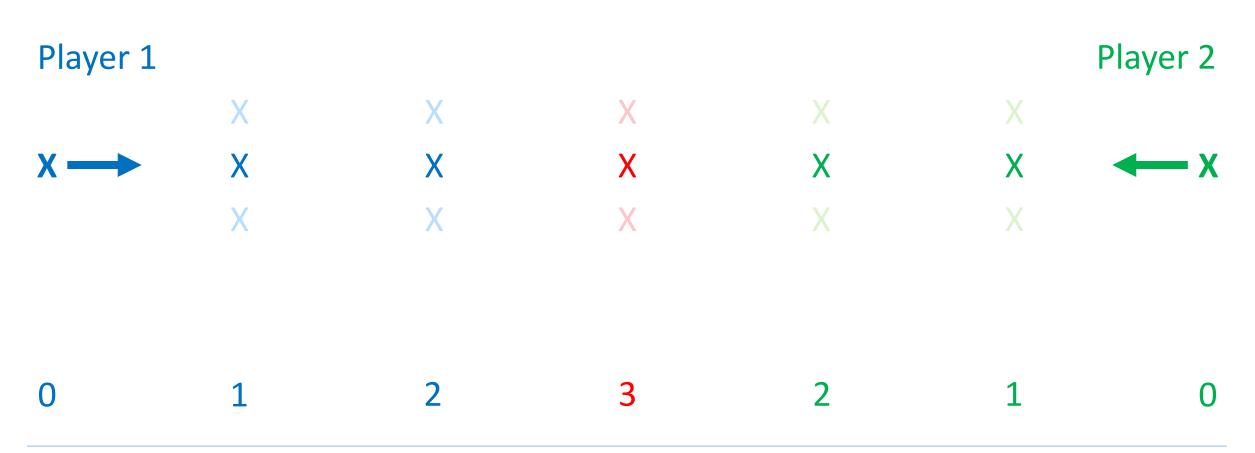
Pedestrians walking game 1



Pedestrians walking game 2



Pedestrians walking game 3



Pedestrians walking

- Two pedestrians approach each other
- Avoid each other once
- Avoid each other twice

(Collide together)

Shibuya crossing

Beauty contest game

Setup

- Choose number between 0 and 100
- Winner = Closest to 1/2 of average

Shamma, course on game theory and distributed control, 2019

Beauty contest game

Setup

- Choose number between 0 and 100
- Winner = Closest to 1/2 of average

Decision quality of individuals affected by decisions of others

Shamma, course on game theory and distributed control, 2019

Beauty contest game

Setup

- Choose number between 0 and 100
- Winner = Closest to 1/2 of average
- Decision quality of individuals affected by decisions of others
- Why "beauty contest"?

Favorite characters = ???

Compare: stock market

Shamma, course on game theory and distributed control, 2019

 $x(t_0) = 0$ infected N = 80M number of population $i = 1, \dots, N$ population $u^{(i)}(t) \in \{0, 1\}$

$$x(t+1) = x(t) + R_{in}x(t) - R_{out}x(t), \text{ where } R_{in}x(t) = \sum_{i=1}^{N} u^{(i)}(t)$$

Task: $\max_{u(t)} \sum_{i=1}^{N} u^{(i)}(t), \text{ s.t. } R_{intensive}x(t) \le 3,000, \forall t$

18 Networked Model Predictive Control for Multi-Vehicle Decision-Making Part 4: Network and Distribution | Dr.-Ing. Bassam Alrifaee

COVID-19 pandemic – Discussion

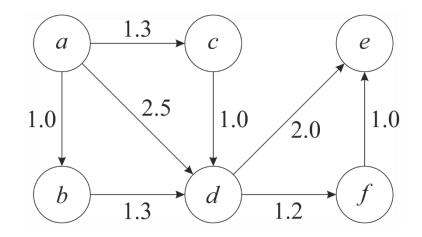
- COVID-19 pandemic as MPC
 - Discuss the effect of the prediction horizon

Graph theory

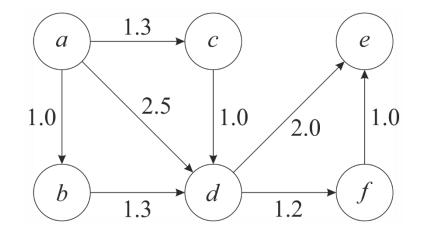
Powerful tool for modeling and analyzingnetworked systems

Reading

- B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD thesis, RWTH Aachen University, 2017.
 - Section 2.2, pages 5-7
- Definitions

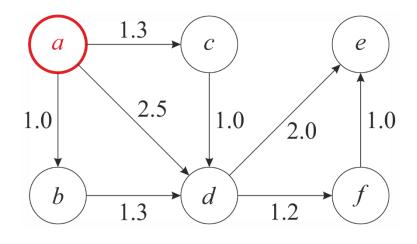


- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- Output: shortest paths between a and all other reachable nodes from a



- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

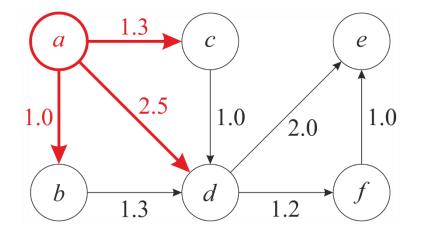
Vertex	Done	Distance	From
a	Yes	0	
b	No	∞	
С	No	∞	
d	No	∞	
е	No	∞	
f	No	∞	



Q = []

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

Vertex	Done	Distance	From
a	Yes	0	
b	No	1.0	a
С	No	1.3	a
d	No	2.5	a
e	No	∞	
f	No	∞	



Q = [b, c, d]

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

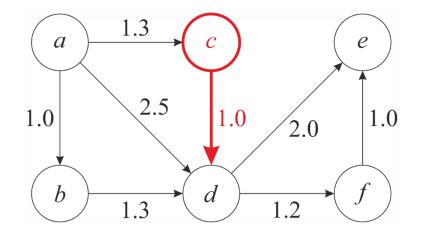
Vertex	Done	Distance	From
a	Yes	0	
b	Yes	1.0	a
С	No	1.3	a
d	No	2.3	b
e	No	∞	
f	No	∞	



 $Q = [\mathbf{b}, c, d]$

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

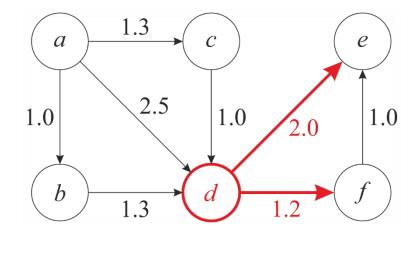
Vertex	Done	Distance	From
a	Yes	0	
b	Yes	1.0	a
С	Yes	1.3	a
d	No	2.3	b
e	No	∞	
f	No	∞	



 $Q = [\mathbf{b}, \mathbf{c}, d]$

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

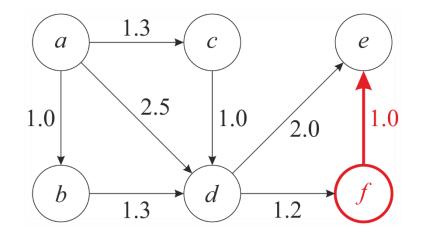
Vertex	Done	Distance	From
a	Yes	0	
b	Yes	1.0	a
С	Yes	1.3	a
d	Yes	2.3	b
e	No	4.3	d
f	No	3.5	d



 $Q = [\mathbf{b}, \mathbf{c}, \mathbf{d}, e, f]$

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

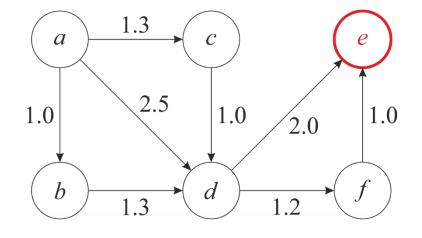
Vertex	Done	Distance	From
a	Yes	0	
b	Yes	1.0	a
С	Yes	1.3	a
d	Yes	2.3	b
e	No	4.3	d
f	Yes	3.5	d



 $Q = [\mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}]$

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

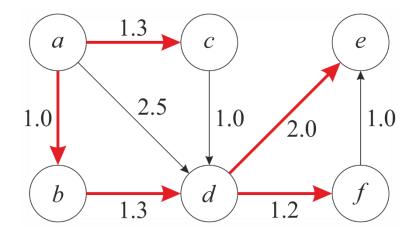
Vertex	Done	Distance	From
a	Yes	0	
b	Yes	1.0	a
С	Yes	1.3	a
d	Yes	2.3	b
e	Yes	4.3	d
f	Yes	3.5	d



 $Q = [\mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}]$

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

Vertex	Done	Distance	From
a	Yes	0	
b	Yes	1.0	a
С	Yes	1.3	a
d	Yes	2.3	b
e	Yes	4.3	d
f	Yes	3.5	d



Computation: $O(N \log(N) + M)$

Networked model predictive control

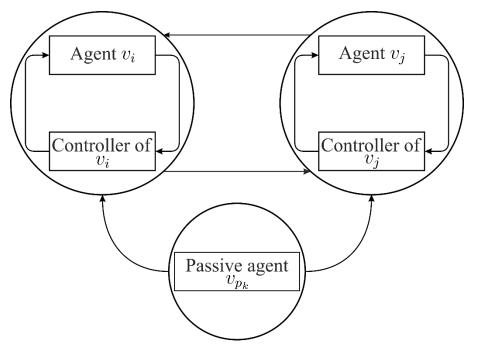
- Reading
 - B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD thesis, RWTH Aachen University, 2017.
 - Chapter 3, pages 20-51

Networked control systems (NCS)

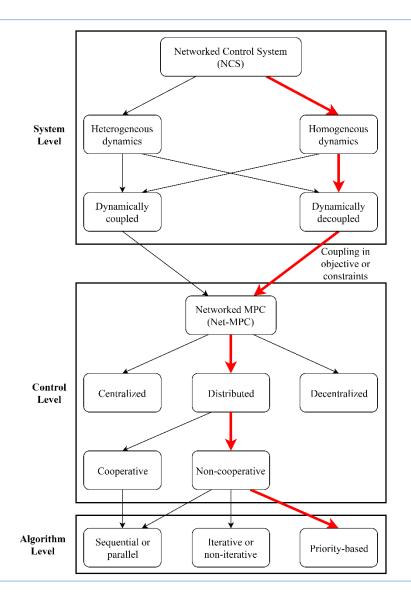
NCS consist of interacting agents (dynamic subsystems)

NCS

- Passive agents
 - Dynamic subsystems without networked control
 - Data communications to active agents
- (Active) Agents
 - Data exchange
 - Achieve their goals while taking the interaction with other agents into consideration
 - Full knowledge about passive agents and their future states
- Classification of agents as a step to full automation of NCS and consideration of non-automatable agents
- Communications restrictions, e.g., time delays, and computation time affect stability and performance
- Network: time-invariant or time-variant



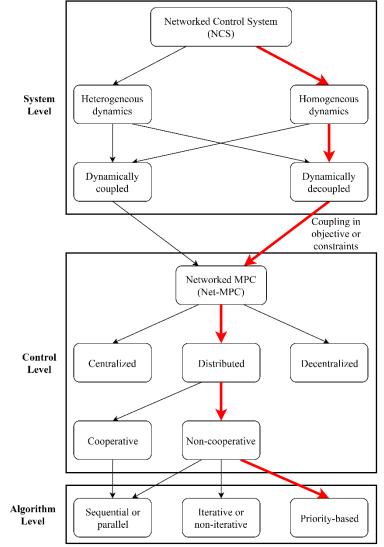
formatik 11

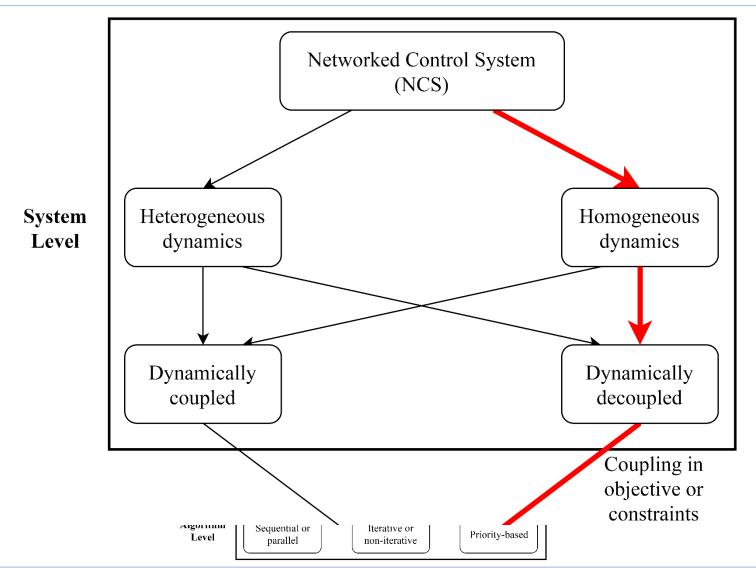


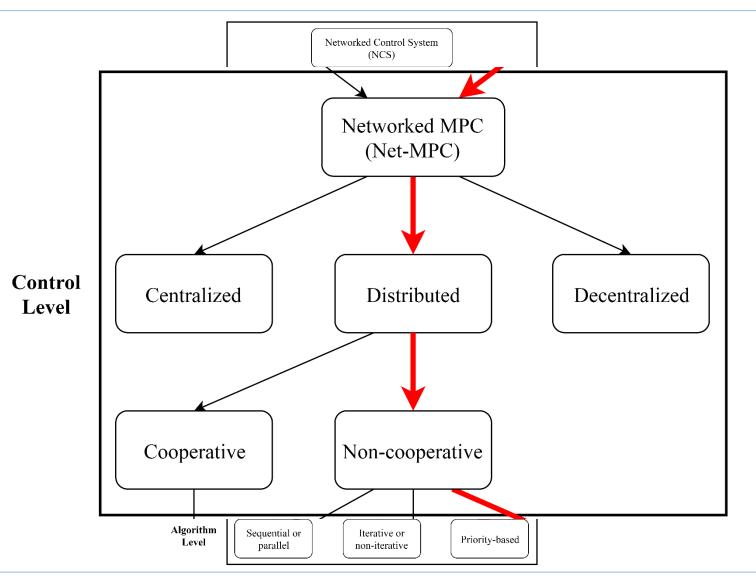
33 Networked Model Predictive Control for Multi-Vehicle Decision-Making Part 4: Network and Distribution | Dr.-Ing. Bassam Alrifaee

- Control strategy: combination of a control method and the algorithm applied to it
- Selection of control strategy based on:
 - NCS categories in the system level
 - Available computation time
 - Communications requirements
- Computation time: time required for the whole NCS to reach a solution at a given time step, i.e.,
 - Measure the states
 - Formulate and solve the optimization problem
 - Apply the inputs to all agents
 - Communications of required data

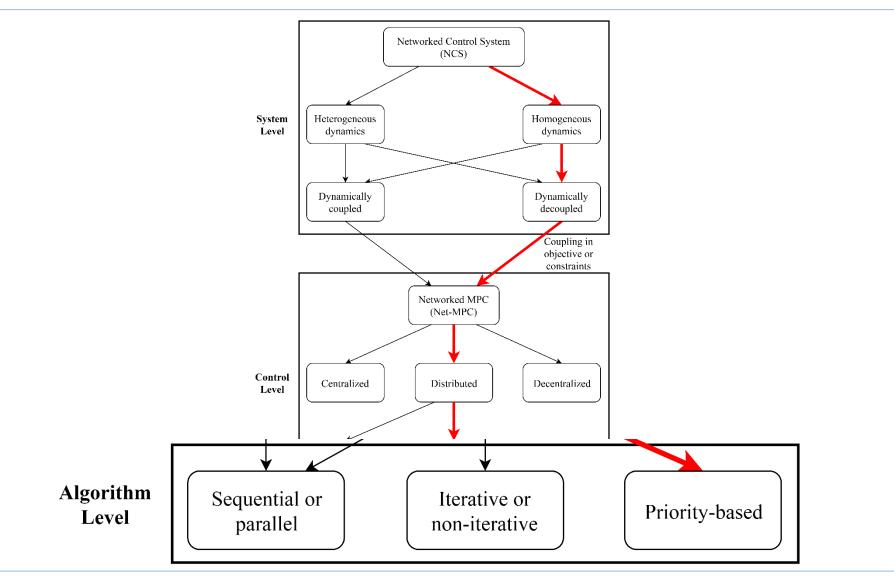
Sequence depends on the control strategy







NCS classification



Networked model predictive control

Method

- Reducing computation time and communications
- Enhancing feasibility and quality of control

Formulation of Net-MPC: basic formulation

- Advantage of Net-MPC
 - dvantage of the action of other agents H_p^{-1} Dealing with the action of other agents $\sum_{k=1}^{H_p^{-1}}$ with respect to their future intention, while making decisions of the agent's own control actions

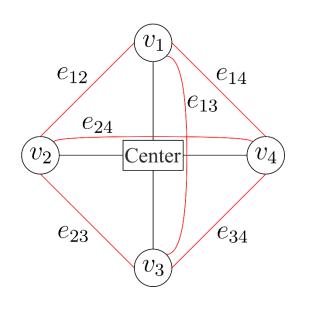
$$J^{(i)^{\star}} = \min_{\Delta \mathbf{u}^{(i)}(\cdot)}$$

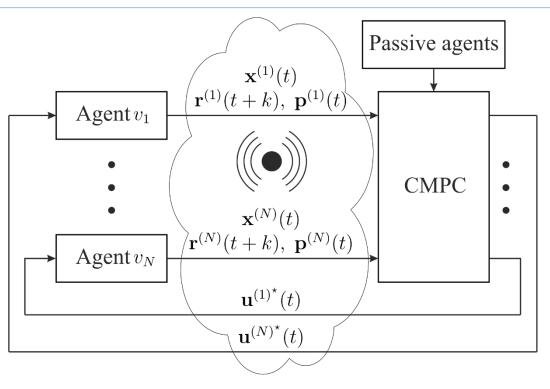
$$\sum_{i=1}^{n-1} l_x^{(i)}(\mathbf{x}^{(i)}(t+k), \mathbf{r}^{(i)}(t+k)) + l_{x_{H_p}}^{(i)}(\mathbf{x}^{(i)}(t+H_p), \mathbf{r}^{(i)}(t+H_p)) +$$

$$\sum_{k=0}^{H_u-1} l_u^{(i)}(\Delta \mathbf{u}^{(i)}(t+k)) + \sum_{\substack{j \ v_j \in \mathcal{V}^{(i)}}} \sum_{k=1}^{H_p} c_o^{(i,j)}(\mathbf{x}^{(i)}(t+k), \mathbf{x}^{(j)}(t+k))$$

subject to
$$(\forall v_j \in \mathcal{V}^{(i)}, \forall v_p \in \mathcal{V}_p^{(i)})$$
:
 $\mathbf{x}^{(i)}(t+1+k) = f^{(i)}(\mathbf{x}^{(i)}(t+k), \mathbf{u}^{(i)}(t+k)), k = 0, \dots, H_p - 1$
 $\mathbf{x}^{(i)}(t+k) \in \mathcal{X}^{(i)}, k = 1, \dots, H_p - 1$
 $\mathbf{x}^{(i)}(t+H_p) \in \mathcal{X}_{H_p}^{(i)}$
 $\mathbf{u}^{(i)}(t+k) \in \mathcal{U}^{(i)}, k = 0, \dots, H_u - 1$
 $\Delta \mathbf{u}^{(i)}(t+k) \in \Delta \mathcal{U}^{(i)}, k = 0, \dots, H_u - 1$
 $c_c^{(i,j)}(\mathbf{x}^{(i)}(t+k), \mathbf{x}^{(j)}(t+k)) \leq 0, k = 1, \dots, H_p$
 $c_c^{(i,p)}(\mathbf{x}^{(i)}(t+k), \mathbf{x}^{(p)}(t+k)) \leq 0, k = 1, \dots, H_p$

Net-MPC: centralized MPC





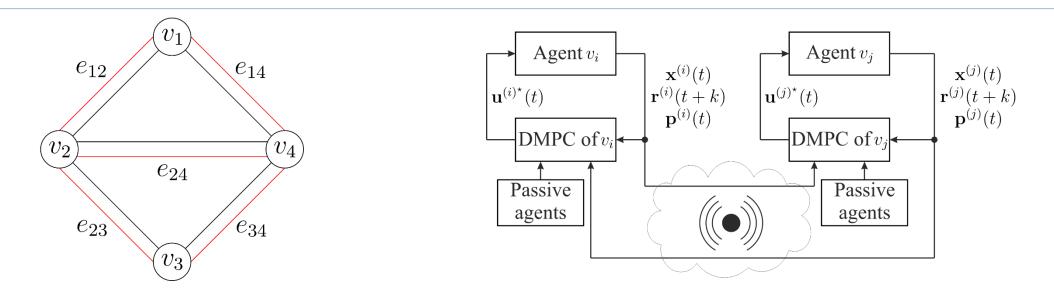
- Not applicable in practice due to
 - High computation time
 - Safety hazards

Benchmark for comparing different distributed MPC strategies

Net-MPC: terms

- NCS performance
 - NCS stability, solution feasibility, solution optimality, solution quality
- A NCS is *stable* if each of its agents is stable in the network
- A solution is *agent-feasible* if each agent's controller generates a feasible solution in terms of its own optimization problem
- A solution is *NCS-feasible* if it is feasible in terms of a corresponding CMPC
- A solution is *agent-optimal* if each single agent's controller generates an optimal solution in terms of its own optimization problem
- A solution is *NCS-optimal* if it is optimal in terms of a corresponding CMPC
- The NCS-quality is defined as the quality of a solution compared with the solution of CMPC
- Assumption: a solution to CMPC exists and it is NCS-stable, -feasible, and -optimal

Net-MPC: cooperative distributed MPC



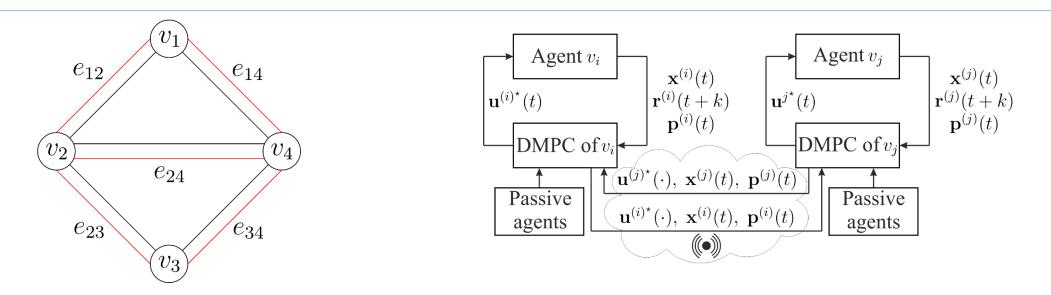
Decomposition of centralized MPC into smaller optimization problems

Each agent just considers hypothetical plans of its neighbors

Prediction consistency

- Prediction consistency means that the predictions x^(j)(t+k), k=1,...,H_p used or computed in the optimization problem of an agent v_i at a time instance t for an agent v_j coincide with the predictions computed by agent v_j itself at the same time instance t
- Without satisfaction of this property, no guarantee for NCS-stability and feasibility
- Coop. DMPC does not satisfy the prediction consistency property
 - Exception: if the NCS is fully connected
 - Coop. DMPC becomes CMPC except the communications structures
 - High computation time

Net-MPC: non-cooperative distributed MPC



Decomposition of centralized MPC into smaller optimization problems

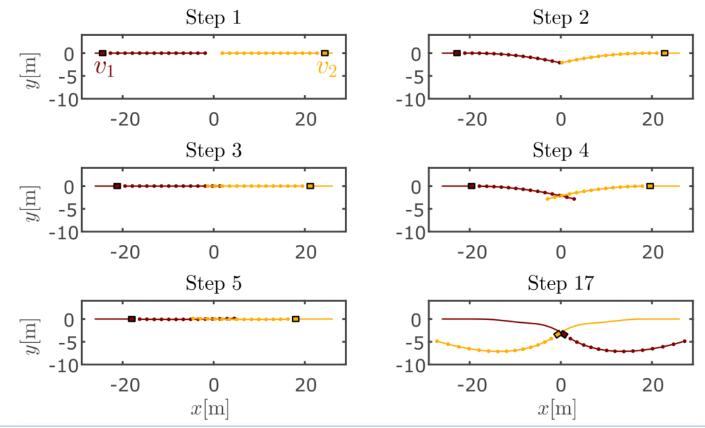
- Consideration only of the own objective function, own constraints, and the coupling objectives and constraints with neighbors (greedy algorithm)
- \blacktriangleright Use of communicated optimized predictions from neighbors \rightarrow time delay

Prediction consistency

- Prediction consistency means that the predictions x^(j)(t+k), k=1,...,H_p used or computed in the optimization problem of an agent v_i at a time instance t for an agent v_j coincide with the predictions computed by agent v_j itself at the same time instance t
- Without satisfaction of this property, no guarantee for NCS-stability and feasibility
- Non-Coop. DMPC does not satisfy the prediction consistency property due to the time delay in the communications

Net-MPC: non-cooperative distributed MPC

- Vehicles move with the same velocity
- Vehicles are located symmetrically with respect to the vertical axes
- Time delay of one time step



46 Networked Model Predictive Control for Multi-Vehicle Decision-Making Part 4: Network and Distribution | Dr.-Ing. Bassam Alrifaee

Pedestrians walking as networked MPC

Pedestrians walking		Networked MPC
Task	Follow the line	Reference
	Act as little as possible	Control input
	Consider physical and logical limits	Constraints
Plan	Use discrete model to anticipate your free movement for 2 steps	Predict, prediction horizon
	Consider your physical (body) limits	Model as a constraint
	 Consider physical and logical limits of your Action Position Orientation Do not collide with each other 	Inputs' and states' constraints
	Plan your action for 1 step	Control horizon

Objective function

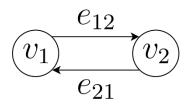
Plan, communicate plan, act

Net-MPC: non-cooperative distributed MPC

Coupling graph

- Coupling graph contains cycles
 - Consideration of exactly the same coupling

Cycles in coupling graph lead to loss of prediction consistency property

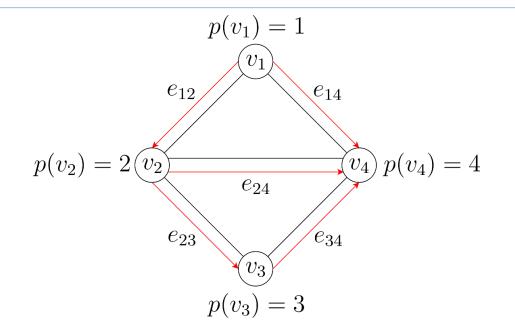


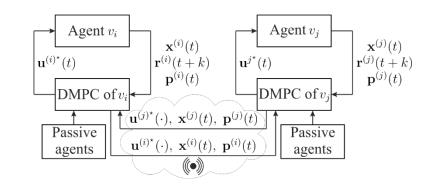
Solutions:

- Solve in sequence and iterate \rightarrow high computation time
- Priority-Based Non-Cooperative Distributed MPC

Networked model predictive control

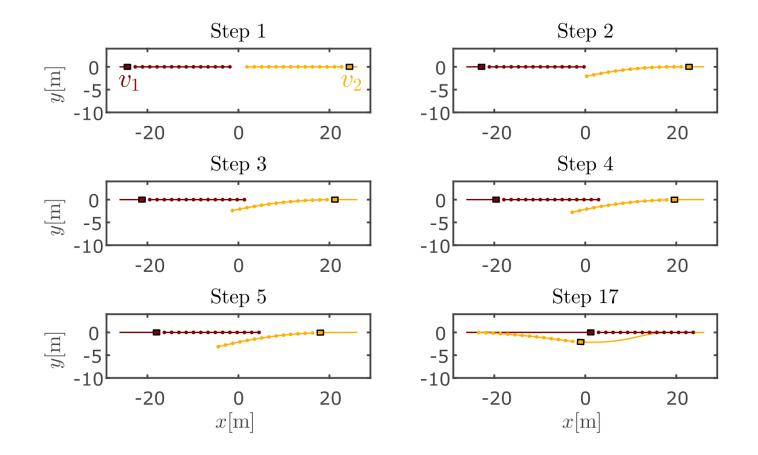
- Reading
 - B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD thesis, RWTH Aachen University, 2017.
 - Chapter 3, pages 51-77





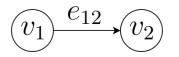
- Assign agents distinct priorities
- Lower priority value corresponds to a higher priority
- Passive agents have the highest priority
- Consideration of the own objective function, constraints, and only the coupling objectives and constraints with higher priority agents

Example: Non-Coop. DMPC vs. PB-Non-Coop. DMPC



Coupling graph

 \blacktriangleright Directed acyclic coupling graph (DAG) \rightarrow proof using adjacency matrix



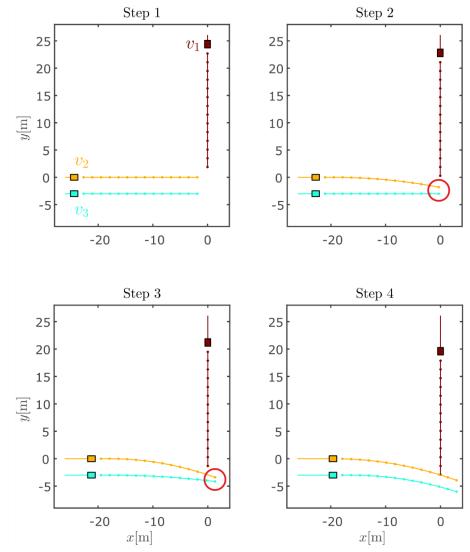
Time delay of predictions of higher priority neighbors

- Done in the case of time-invariant coupling topology and assuming bounded disturbances in higher priority neighbors
- Loss of the prediction consistency property in the case of a time-variant coupling topology

- Vehicles move with the same velocity
- Priorities
 - v₁ First
 - v_2 Second
 - v_3^{-} Third
- Time delay of one time step

Solutions:

- Infinite prediction horizon → not implementable in real-time
- Incorporating a sequential algorithm into the PB-Non-Coop. DMPC strategy

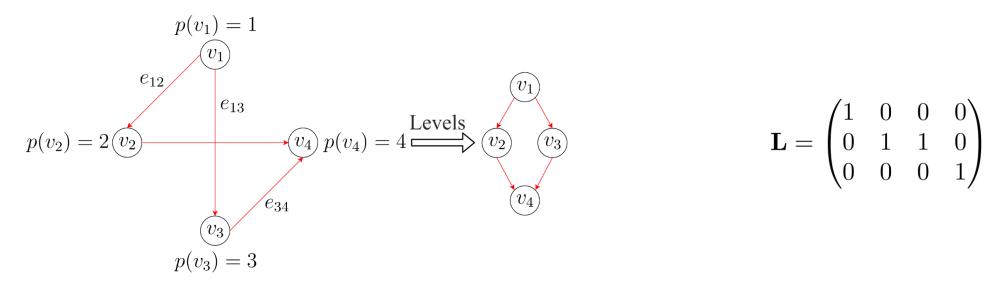


Sequential algorithm based on coupling graph

- Priorities generate a partial order
- Converting the partial order into a topological order
 - Renumbering the vertices of the coupling graph with their corresponding priorities
 - Valid sequence for solving the optimization problems
 - Possible if the coupling graph is DAG (proven)
- ► Our topological order is not unique → parallelization of subsets of the optimization problems possible

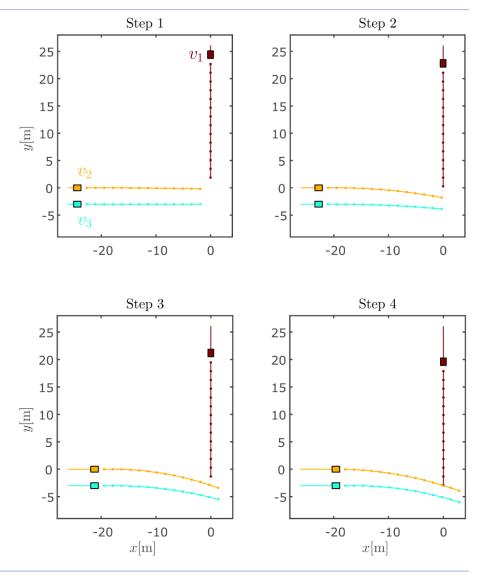
Algorithm to determine parallelizable vertices

- Input: adjacency matrix of a DAG
- Output: parallelizable vertices saved in a matrix L



- Rules of parallel and sequential computation:
 - Agents on the same level solve in parallel
 - If disturbances of agents on the first level are negligible, agents on the first and second level solve in parallel
 - Agents on level $3 \le i \le N_l$ solve sequentially after agents on level i 1
 - The algorithm is executed repeatedly in the case of a change in the coupling graph

- \blacktriangleright Vehicles v_1 and v_2 solve in parallel
- \blacktriangleright Vehicle v_3 solves after v_1 and v_2
- Satisfaction of the prediction consistency property



Stability and feasibility discussion

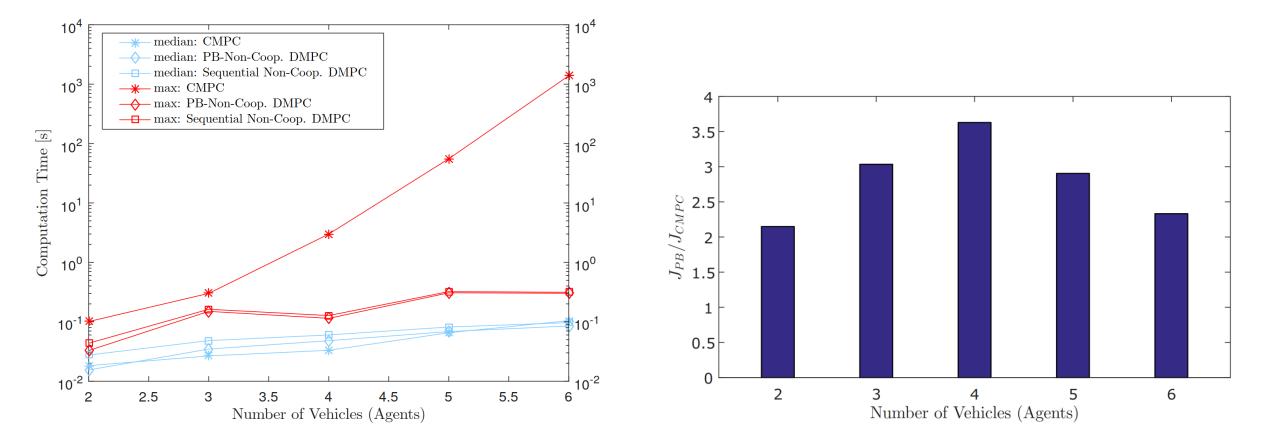
- Main assumptions
 - A centralized MPC would generate a solution in each sample time that is NCS-stable, -feasible, and -optimal
 - Considering each agent as isolated from NCS, the solutions of PB-Non-Coop. DMPC are agent-stable, -feasible and -optimal
- ► Satisfaction of the prediction consistency property in any NCS even with time delays and time-variant coupling topology → Proof using mathematical induction
- Convergence after only one iteration of sequence

Optimization time of NCS in different Net-MPC strategies

Control Strategy	Optimization Time
CMPC	T_{ot}
Coop. DMPC	$T_{ot} = \max T_{ot}(v_i), \ \forall v_i \in \mathcal{V}$
PB-Non-Coop. DMPC	$\begin{array}{c} T_{ot} = \max_{i \in level_{1,2}} T_{ot}(v_i) + \\ \sum_{j=3}^{N_l} \max_{i \in level_j} T_{ot}(v_i) \end{array}$
Sequential iterative DMPC	$T_{ot} = \sum_{1}^{N_{iter}} \sum_{i=1}^{N} T_{ot}(v_i)$

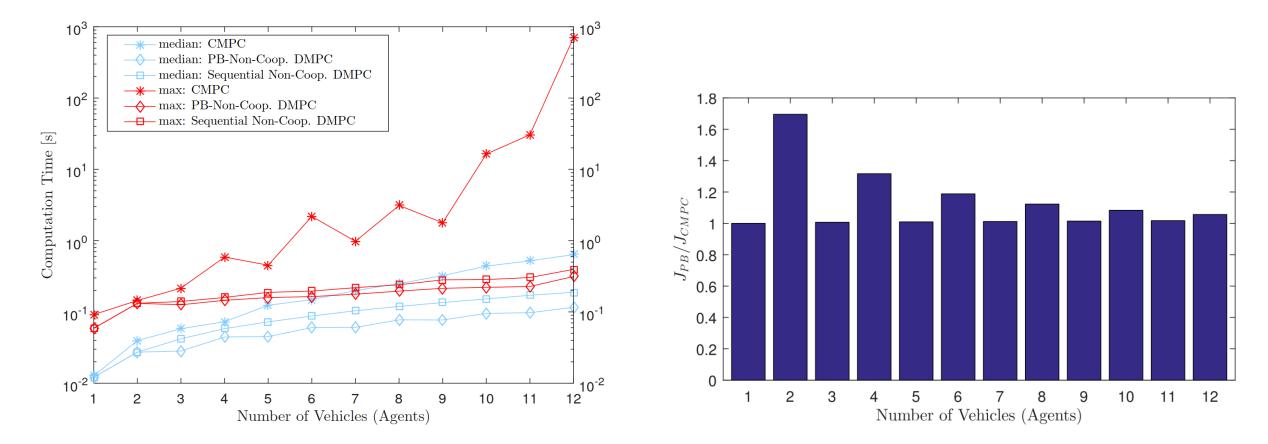
Net-MPC: comparison

► Testing scenario *N*-circle, mean objective values normalized



Net-MPC: comparison

► Testing scenario *N*-parallel, mean objective values normalized



Net-MPC: application to vehicle decision-making

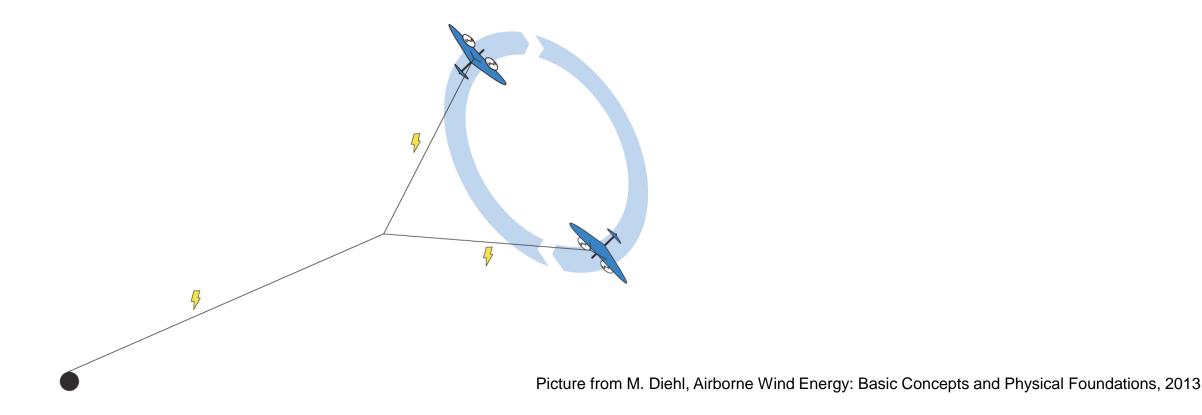
- The application to vehicle decision-making combines high-level control methodologies and requirements of autonomous vehicles within a networked framework
- Networked vehicles are dynamically decoupled agents
- Couplings are functions of a subset of the states of a vehicle and a subset of the states of its neighbors
- (Active) agents are vehicles and passive agents are obstacles
- Net-MPC unifies collision detection, avoidance trajectory planning, and trajectory following in one optimization problem
- Efficient method to find a solution to the (in general non-convex) optimization problem of vehicle decision-making

Vehicle examples

- Video of simulation results
 - https://youtu.be/zS3UBx09O6M
- Video of experimental results
 - https://youtu.be/X2syxG5GI6g
- Further simulation results
 - https://youtu.be/XGql8FrjW6I
 - https://youtu.be/7sq3N8vwusA
 - https://youtu.be/kbooJFK52Fg

Application to aerial vehicles

Airborne wind energy with a multiple wing system



Summary

- Developed for NCS consisting of dynamically decoupled agents
- Coupling in the objective function or in the constraints
- Consideration of time-variant coupling

- Satisfaction of prediction consistency property
- NCS-stable and -feasible
- Reduction of the computation time

