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Course contents (CPM group course)

► Vehicle models

► Control and optimization

► Network and distribution

► Machine perception

► Software architectures 
and testing concepts

► Case study
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CPM Lab architecture
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CPM Lab architecture
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Literature

► J. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.

► S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University 
Press, 2004.

► R.C. Dorf and R.H. Bishop. Modern Control Systems. Prentice-Hall, 2008.
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Further literature (1)

► F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear and 
Hybrid Systems, Cambridge University Press, 2017.

► And many more…
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Further literature (2)

► B. Alrifaee. Networked Model Predictive Control for Vehicle Collision 
Avoidance. PhD thesis, RWTH Aachen University, 2017.

► B. Alrifaee. MATLAB Simulation of Networked Model Predictive Control for 
Vehicle Collision Avoidance, 2017. Available: 
https://doi.org/10.5281/zenodo.1252992

► Check out our website
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Model predictive control

► Flipped classroom
▪ Group B should prepare a summary, ca. 15 minutes

► Watching
▪ https://youtu.be/1A734g96Npk

► Reading
▪ B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD 

thesis, RWTH Aachen University, 2017.
• Section 2.3, pages 8-14
• Section 4.5.1.1, pages 100-101

▪ J. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002. [optional]
• Section 2.6.1, pages 53-56
• Sections 2.6.2 and 2.6.3, pages 56-61 [optional]
• Section 3.1.1, pages 74-77
• Section 3.2.1, pages 81-84
• Section 3.4, pages 97-99
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Model predictive control
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classical control (PID) predictive control (MPC)



Control and Perception in Networked and Autonomous Vehicles
Part 3: Control Engineering and Optimization | Dr. Bassam Alrifaee

Model predictive control
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Model predictive control

1. Bd3

2. Qc2
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Model predictive control

► Further examples
▪ Automotive systems
▪ Aeronautic industry

• See SpaceX landing, ClearSpace

▪ Smart electricity grids
▪ Drinking water networks
▪ Financial engineering
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Model predictive control
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Model predictive control
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Model predictive control
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Model predictive control

► Result

► Apply
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Model predictive control – pedestrian walking

► Objective 𝐽
▪ Follow the line (minimize distance of your positions to markers on rope)

► Constraints
▪ Model: 𝑓 𝑥, 𝑢 (position is integral of velocity)

• Position: states 𝐱
• Velocity:

- Forwards: constant, one step per time step
- Sideways: given by input change Δ𝐮

▪ Input change: max. one step per time step to either side
▪ States: must be collision-free (with obstacles)
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Model predictive control – pedestrian walking

► Parameters
▪ Prediction horizon 𝐻𝑝= 3

▪ Control horizon 𝐻𝑢 = 1
▪ Time step duration 𝑇𝑠
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Model predictive control – pedestrian walking

► Process for agent 𝑖 at time 𝑘:
1. Form MPC optimization problem

2. Optimize (generate plan): 𝐱⋅|𝑘
(𝑖)

3. Act (according to the first step of the plan): 𝐮𝑘
(𝑖)
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Model predictive control – pedestrian walking

► Process for agent 𝑖 at time 𝑘:
1. Form MPC optimization problem

2. Optimize (generate plan): 𝐱⋅|𝑘
(𝑖)

3. Act (according to the first step of the plan): 𝐮𝑘
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Model predictive control

► MATLAB exercise
▪ Basic implementation

• ModelPredictiveControl.m
• ModelPredictiveControl_background.pdf

▪ MPC toolbox [optional]
▪ B. Alrifaee. MATLAB Simulation of Networked Model Predictive Control for Vehicle 

Collision Avoidance, 2017. Available: https://doi.org/10.5281/zenodo.1252992
[optional]
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Sequential convex programming

► Flipped classroom
▪ Group C should prepare a summary, ca. 15 minutes

► Watching
▪ https://youtu.be/upMWYV7S1Y0

► Reading
▪ B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD 

thesis, RWTH Aachen University, 2017.
• Section 4.5, the introduction part, pages 99-100
• Section 4.5.3, pages 110-119
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Sequential convex programming – concept

► “Solves” non-convex optimization problems

► Idea
▪ Convexify non-convex parts of the objective function and constraints using convex 

approximations and preserve their convex parts
▪ Solve convex problem

• Global solution
• Computationally efficient

▪ New approximation around optimal solution
▪ Repeat until convergence
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Sequential convex programming
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Sequential convex programming 

► Application to “solve” non-convex QCQPs

► QCQP (Quadratic Constrained Quadratic Program)

► 𝐏𝑖 is symmetric but not positive semi-definite
▪ In the vehicle example, the collision avoidance constraints are concave functions
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Sequential convex programming – concept

► “Solves” non-convex optimization problems

► Idea
▪ Convexify non-convex parts of the objective function and constraints using convex 

approximations and preserve their convex parts
▪ Solve convex problem

• Global solution
• Computationally efficient

▪ New approximation around optimal solution
▪ Repeat until convergence
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Sequential convex programming – algorithm
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Sequential convex programming – algorithm

Starting point

► May use time-shifted solution from 
previous time step

► No feasible solution
▪ May be bad local minimum
▪ Try other starting points
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Sequential convex programming – algorithm

Convex approximation (local)

► Linearization of quadratic 
constraints around 𝐱𝑐
▪ Best convex approximation of a concave 

function is its affine approximation*
▪ Affine function lies above the concave 

function at all points, i.e., the affine 
function is globally upper bound on the 
concave function

▪ Resulting program is a restriction of the 
original one
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Sequential convex programming – algorithm

Solve convex sub-problem

► Fast

► Iterating around the new solution 
produces solutions with lower 
objective values, because convex; 
and therefore, of original program
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Sequential convex programming – algorithm

Progress evaluation

► Decreases in objective value of 
original problem indicate progress
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Sequential convex programming – discussion

► Fast (in our applications <100ms)

► Locally optimal solution of QCQP problem

► SCP sub-problem is restriction of QCQP
▪ SCP feasible implies QCQP feasible
▪ Feasibility issues, SCP too restrictive
▪ Solution: slack variable
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Model predictive control – vehicle example

Objective Function

► Follow a predefined reference trajectory
▪ Minimize the distances between the vehicle position and the reference trajectory

► Only accept small input changes
▪ Keep the steering angle changes as small as possible
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Model predictive control – vehicle example

Constraints

► Input constraints, do not exceed
▪ A maximum steering angle
▪ A maximum change of the steering angle per time step
▪ A maximum lateral acceleration

► Collision avoidance constraints
▪ Do not collide with other vehicles or obstacles
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Sequential convex programming – vehicle example
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Sequential convex programming – vehicle example
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Sequential convex programming – vehicle example
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Sequential convex programming – vehicle example
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Sequential convex programming – vehicle example
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Sequential convex programming – vehicle example
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Sequential convex programming – vehicle example
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Sequential convex programming – vehicle example
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Sequential convex programming – vehicle example

► Convergence of SCP: 𝐽𝑐 , Progress of SCP: 𝐽𝑐

43



Control and Perception in Networked and Autonomous Vehicles
Part 3: Control Engineering and Optimization | Dr. Bassam Alrifaee

Sequential convex programming – vehicle example

► Predicted and real decrease of the objective value
▪ 𝑑 መ𝐽 ≤ 𝑑𝐽 because approximate program is a restriction
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Sequential convex programming – vehicle example

► Convergence of the control input (control horizon = 3)
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Sequential convex programming – vehicle example

► Slack variable, progress of SCP
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Sequential convex programming – vehicle example

► Computation time
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Sequential convex programming – vehicle example

► Video of “Frogger” simulation

► Video of experimental results

► Video of trust

► Vehicle racing, videos of simulation results
▪ https://youtu.be/t4tkZA8yZkg
▪ https://youtu.be/_BxhYhIbORk
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Sequential convex programming

► MATLAB exercise
▪ B. Alrifaee. MATLAB Simulation of Networked Model Predictive Control for Vehicle 

Collision Avoidance, 2017. Available: https://doi.org/10.5281/zenodo.1252992
• Function \controller\SCP_optimizer.m
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Sequential convex programming – conclusion

► SCP finds a (good) upper bound on the non-convex optimization problem 
starting from the time-shifted last solution of MPC
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Network and Distribution

► Networked model predictive control
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