

Lecture Control and Perception in Networked and Autonomous Vehicles

Dr. Bassam Alrifaee | Patrick Scheffe, M. Sc. | Simon Schäfer, M. Sc. Winter Semester 2023/2024

Part 3

Control Engineering and Optimization

Course contents (CPM group course)

Vehicle models Distributed Localization Predictive Control Systems Control and optimization Network and distribution **CPN** Machine perception Software architectures Service-Oriented **Real-time** and testing concepts **Experiments** Architecture Case study

*CPM: Cyber-Physical Mobility

CPM Lab architecture

3 Control and Perception in Networked and Autonomous Vehicles Part 3: Control Engineering and Optimization | Dr. Bassam Alrifaee

CPM Lab architecture

4 Control and Perception in Networked and Autonomous Vehicles Part 3: Control Engineering and Optimization | Dr. Bassam Alrifaee

Literature

- ▶ J. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.
- S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
- R.C. Dorf and R.H. Bishop. Modern Control Systems. Prentice-Hall, 2008.

Further literature (1)

- F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear and Hybrid Systems, Cambridge University Press, 2017.
- And many more...

Further literature (2)

- B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD thesis, RWTH Aachen University, 2017.
- B. Alrifaee. MATLAB Simulation of Networked Model Predictive Control for Vehicle Collision Avoidance, 2017. Available: https://doi.org/10.5281/zenodo.1252992
- Check out our website

Flipped classroom

- Group B should prepare a summary, ca. 15 minutes
- Watching
 - https://youtu.be/1A734g96Npk

Reading

- B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD thesis, RWTH Aachen University, 2017.
 - Section 2.3, pages 8-14
 - Section 4.5.1.1, pages 100-101
- J. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002. [optional]
 - Section 2.6.1, pages 53-56
 - Sections 2.6.2 and 2.6.3, pages 56-61 [optional]
 - Section 3.1.1, pages 74-77
 - Section 3.2.1, pages 81-84
 - Section 3.4, pages 97-99

classical control (PID)

9 Control and Perception in Networked and Autonomous Vehicles Part 3: Control Engineering and Optimization | Dr. Bassam Alrifaee

schach-tipps.de, euroschach.de

- 1. Bd3
- 2. Qc2

schach-tipps.de, euroschach.de

Further examples

- Automotive systems
- Aeronautic industry
 - See SpaceX landing, ClearSpace
- Smart electricity grids
- Drinking water networks
- Financial engineering

$$J^{\star} = \min_{\Delta \mathbf{u}(\cdot)} \sum_{k=1}^{H_p - 1} l_x(\mathbf{x}(t+k), \mathbf{r}(t+k)) + l_{x_{H_p}}(\mathbf{x}(t+H_p), \mathbf{r}(t+H_p)) + \sum_{k=0}^{H_u - 1} l_u(\Delta \mathbf{u}(t+k))$$

subject to:

$$\mathbf{x}(t+1+k) = f(\mathbf{x}(t+k), \mathbf{u}(t+k)), \ k = 0, \dots, H_p - 1$$

$$\mathbf{x}(t+k) \in \mathcal{X}, \ k = 1, \dots, H_p - 1$$

$$\mathbf{x}(t+H_p) \in \mathcal{X}_{H_p}$$

$$\mathbf{u}(t+k) \in \mathcal{U}, \ k = 0, \dots, H_u - 1$$

$$\Delta \mathbf{u}(t+k) \in \Delta \mathcal{U}, \ k = 0, \dots, H_u - 1$$

where

where

$$\Delta \mathbf{u}(t+k) = \mathbf{u}(t+k) - \mathbf{u}(t+k-1), \ k = 0, \dots, H_u - 1, \ \mathbf{u}(-1) = 0$$

15 Control and Perception in Networked and Autonomous Vehicles Part 3: Control Engineering and Optimization | Dr. Bassam Alrifaee

Result

$$\Delta \mathbf{u}^{\star}(\cdot) = \begin{pmatrix} \Delta \mathbf{u}^{\star}(t) & \dots & \Delta \mathbf{u}^{\star}(t + H_p - 1) \end{pmatrix}^T$$

$$\mathbf{u}^{\star}(t) = \mathbf{u}(t-1) + \Delta \mathbf{u}^{\star}(t), \text{ during } [t, t+1)$$

$$J^{\star} = \min_{\Delta \mathbf{u}(\cdot)} \sum_{k=1}^{H_p - 1} l_x(\mathbf{x}(t+k), \mathbf{r}(t+k)) + l_{x_{H_p}}(\mathbf{x}(t+H_p), \mathbf{r}(t+H_p)) + \sum_{k=0}^{H_u - 1} l_u(\Delta \mathbf{u}(t+k))$$

subject to:

$$\mathbf{x}(t+1+k) = f(\mathbf{x}(t+k), \mathbf{u}(t+k)), \ k = 0, \dots, H_p - 1$$

$$\mathbf{x}(t+k) \in \mathcal{X}, \ k = 1, \dots, H_p - 1$$

$$\mathbf{x}(t+H_p) \in \mathcal{X}_{H_p}$$

$$\mathbf{u}(t+k) \in \mathcal{U}, \ k = 0, \dots, H_u - 1$$

$$\Delta \mathbf{u}(t+k) \in \Delta \mathcal{U}, \ k = 0, \dots, H_u - 1$$
where

$$\Delta \mathbf{u}(t+k) = \mathbf{u}(t+k) - \mathbf{u}(t+k-1), \ k = 0, \dots, H_u - 1, \ \mathbf{u}(-1) = 0$$

Objective J

- Follow the line (minimize distance of your positions to markers on rope)

Constraints

- Model: f(x, u) (position is integral of velocity)
 - Position: states x
 - Velocity:
 - Forwards: constant, one step per time step
 - Sideways: given by input change $\Delta \mathbf{u}$
- Input change: max. one step per time step to either side
- States: must be collision-free (with obstacles)

Parameters

- Prediction horizon $H_p = 3$
- Control horizon $H_u = 1$
- Time step duration T_s

- Process for agent i at time k:
 - 1. Form MPC optimization problem
 - 2. Optimize (generate plan): $\mathbf{x}_{\cdot|k}^{(i)}$
 - 3. Act (according to the first step of the plan): $\mathbf{u}_{k}^{(i)}$

- Process for agent i at time k:
 - 1. Form MPC optimization problem
 - 2. Optimize (generate plan): $\mathbf{x}_{\cdot|k}^{(i)}$
 - 3. Act (according to the first step of the plan): $\mathbf{u}_{k}^{(i)}$

MATLAB exercise

- <u>Basic implementation</u>
 - ModelPredictiveControl.m
 - ModelPredictiveControl_background.pdf
- MPC toolbox [optional]
- B. Alrifaee. MATLAB Simulation of Networked Model Predictive Control for Vehicle Collision Avoidance, 2017. Available: <u>https://doi.org/10.5281/zenodo.1252992</u> [optional]

Sequential convex programming

Flipped classroom

- Group C should prepare a summary, ca. 15 minutes
- Watching
 - https://youtu.be/upMWYV7S1Y0
- Reading
 - B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD thesis, RWTH Aachen University, 2017.
 - Section 4.5, the introduction part, pages 99-100
 - Section 4.5.3, pages 110-119

Sequential convex programming – concept

"Solves" non-convex optimization problems

Idea

- Convexify non-convex parts of the objective function and constraints using convex approximations and preserve their convex parts
- Solve convex problem
 - Global solution
 - Computationally efficient
- New approximation around optimal solution
- Repeat until convergence

Sequential convex programming

24 Control and Perception in Networked and Autonomous Vehicles Part 3: Control Engineering and Optimization | Dr. Bassam Alrifaee

Sequential convex programming

Application to "solve" non-convex QCQPs

QCQP (Quadratic Constrained Quadratic Program)

$$\min_{\mathbf{x}} \quad \mathbf{x}^T \mathbf{P}_0 \mathbf{x} + \mathbf{q}_0^T \mathbf{x} + r_0$$

subject to:
$$\mathbf{x}^T \mathbf{P}_i \mathbf{x} + \mathbf{q}_i^T \mathbf{x} + r_i \le 0, \ i = 1, \dots, m$$

 \triangleright **P**_{*i*} is symmetric but not positive semi-definite

In the vehicle example, the collision avoidance constraints are concave functions

Sequential convex programming – concept

"Solves" non-convex optimization problems

Idea

- Convexify non-convex parts of the objective function and constraints using convex approximations and preserve their convex parts
- Solve convex problem
 - Global solution
 - Computationally efficient
- New approximation around optimal solution
- Repeat until convergence

Algorithm 1 SCP algorithm to "solve" non-convex QCQPs

Input: A non-convex QCQP

Output: Solution vector $\mathbf{x} \in \mathbb{R}^n$

- 1: c := 1 {Iteration counter}
- 2: Determine starting point \mathbf{x}_c
- 3: Compute the objective value J_c of the non-convex program using \mathbf{x}_c
- 4: Form a convex approximation of the non-convex parts of the inequality constraints using \mathbf{x}_c
- 5: Compute the optimal solution \mathbf{x}_{c+1} of the resulting convex program
- 6: Compute the objective value J_{c+1} of the non-convex program using \mathbf{x}_{c+1}
- 7: if $J_c J_{c+1} \leq \epsilon$ then
- 8: return \mathbf{x}_{c+1}
- 9: **end if**
- 10: c := c + 1
- 11: **go to** 4

Starting point

- May use time-shifted solution from previous time step
- No feasible solution
 - May be bad local minimum
 - Try other starting points

Algo	$\mathbf{prithm} \ 1 \ \mathrm{SCP} \ \mathrm{algorithm} \ \mathrm{to} \ \text{``solve'' non-convex} \ \mathrm{QCQPs}$
Inpu	t: A non-convex QCQP
Out	put: Solution vector $\mathbf{x} \in \mathbb{R}^n$
1: c	$:= 1 \{ \text{Iteration counter} \}$
2: L	Determine starting point \mathbf{x}_c
3: C	Compute the objective value J_c of the non-convex program using \mathbf{x}_c
4: F	form a convex approximation of the non-convex parts of the inequality constraints using \mathbf{x}_c
5: C	Compute the optimal solution \mathbf{x}_{c+1} of the resulting convex program
6: C	Compute the objective value J_{c+1} of the non-convex program using \mathbf{x}_{c+1}
7: i	$\mathbf{f} \ J_c - J_{c+1} \leq \epsilon \ \mathbf{then}$
8:	return \mathbf{x}_{c+1}
9: e	nd if
10: c	:= c + 1
11: g	o to 4

Convex approximation (local)

- Linearization of quadratic constraints around x_c
 - Best convex approximation of a concave function is its affine approximation*
 - Affine function lies above the concave function at all points, i.e., the affine function is globally upper bound on the concave function
 - Resulting program is a restriction of the original one

Algorithm 1 SCP algorithm to "solve" non-convex QCQPs						
	Input: A non-convex QCQP					
Output: Solution vector $\mathbf{x} \in \mathbb{R}^n$						
	1: $c := 1$ {Iteration counter}					
	2: Determine starting point \mathbf{x}_c					
	3. Compute the objective value J_c of the non-convex program using \mathbf{x}_c					
	4: Form a convex approximation of the non-convex parts of the inequality constraints using \mathbf{x}_c					
Ž	5: Compute the optimal solution \mathbf{x}_{c+1} of the resulting convex program					
	6: Compute the objective value J_{c+1} of the non-convex program using \mathbf{x}_{c+1}					
	7: if $J_c - J_{c+1} \leq \epsilon$ then					
	8: return \mathbf{x}_{c+1}					
	9: end if					
	10: $c := c + 1$					
	11: go to 4					

* D. Zwick. Best Approximation by Convex Functions. The American Mathematical Monthly, 94(6):528–534, 1987.

<u>ink</u>

Solve convex sub-problem

- Fast
- Iterating around the new solution produces solutions with lower objective values, because convex; and therefore, of original program

Alg	gorithm 1 SCP algorithm to "solve" non-convex QCQPs
Inp	out: A non-convex QCQP
Ou	tput: Solution vector $\mathbf{x} \in \mathbb{R}^n$
1:	$c := 1$ {Iteration counter}
2:	Determine starting point \mathbf{x}_c
3:	Compute the objective value J_c of the non-convex program using \mathbf{x}_c
4:	Form a convex approximation of the non-convex parts of the inequality constraints using \mathbf{x}_c
5:	Compute the optimal solution \mathbf{x}_{c+1} of the resulting convex program
6:	Compute the objective value J_{c+1} of the non-convex program using \mathbf{x}_{c+1}
7:	$ \text{ if } J_c - J_{c+1} \leq \epsilon \ \text{ then} \\$
8:	$\mathbf{return} \ \mathbf{x}_{c+1}$
9:	end if
10:	c := c + 1
11:	go to 4

Progress evaluation

Decreases in objective value of original problem indicate progress

Algorithm 1 SCP algorithm to "solve" non-convex QCQPs				
Input: A non-convex QCQP				
Output: Solution vector $\mathbf{x} \in \mathbb{R}^n$				
1: $c := 1$ {Iteration counter}				
2: Determine starting point \mathbf{x}_c				
3: Compute the objective value J_c of the non-convex program using \mathbf{x}_c				
4: Form a convex approximation of the non-convex parts of the inequality constraints using \mathbf{x}_c				
5: Compute the optimal solution \mathbf{x}_{c+1} of the resulting convex program				
6: Compute the objective value J_{c+1} of the non-convex program using \mathbf{x}_{c+1}				
7: if $J_c - J_{c+1} \leq \epsilon$ then				
8: return \mathbf{x}_{c+1}				
9: end if				
10: $c := c + 1$				
11: go to 4				

Sequential convex programming – discussion

- Fast (in our applications <100ms)</p>
- Locally optimal solution of QCQP problem
- SCP sub-problem is restriction of QCQP
 - SCP feasible implies QCQP feasible
 - Feasibility issues, SCP too restrictive
 - Solution: slack variable

Objective Function

- Follow a predefined reference trajectory
 - Minimize the distances between the vehicle position and the reference trajectory

- Only accept small input changes
 - Keep the steering angle changes as small as possible

ontrol Horizon

Model predictive control – vehicle example

Constraints

- Input constraints, do not exceed
 - A maximum steering angle
 - A maximum change of the steering angle per time step
 - A maximum lateral acceleration

Collision avoidance constraints

Do not collide with other vehicles or obstacles

• Convergence of SCP: \hat{J}_c , Progress of SCP: J_c

43 Control and Perception in Networked and Autonomous Vehicles Part 3: Control Engineering and Optimization | Dr. Bassam Alrifaee

- Predicted and real decrease of the objective value
 - $d_{\hat{J}} \leq d_J$ because approximate program is a restriction

Convergence of the control input (control horizon = 3)

45 Control and Perception in Networked and Autonomous Vehicles Part 3: Control Engineering and Optimization | Dr. Bassam Alrifaee

Slack variable, progress of SCP

46 Control and Perception in Networked and Autonomous Vehicles Part 3: Control Engineering and Optimization | Dr. Bassam Alrifaee

Computation time

- Video of "Frogger" simulation
- Video of experimental results
- Video of trust
- Vehicle racing, videos of simulation results
 - https://youtu.be/t4tkZA8yZkg
 - https://youtu.be/ BxhYhlbORk

Sequential convex programming

MATLAB exercise

- B. Alrifaee. MATLAB Simulation of Networked Model Predictive Control for Vehicle Collision Avoidance, 2017. Available: <u>https://doi.org/10.5281/zenodo.1252992</u>
 - Function \controller\SCP_optimizer.m

Sequential convex programming – conclusion

SCP finds a (good) upper bound on the non-convex optimization problem starting from the time-shifted last solution of MPC

Next Part

Network and Distribution

Networked model predictive control