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CPM Lab architecture
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Further literature (1)

F. Borrelli, A. Bemporad, and M. Morari. Predictive Control for Linear and
Hybrid Systems, Cambridge University Press, 2017.

And many more...
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Further literature (2)

B. Alrifaee. Networked Model Predictive Control for Vehicle Collision
Avoidance. PhD thesis, RWTH Aachen University, 2017.

B. Alrifaee. MATLAB Simulation of Networked Model Predictive Control for
Vehicle Collision Avoidance, 2017. Available:

Check out our website
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https://doi.org/10.5281/zenodo.1252992

Model predictive control

Flipped classroom
Group B should prepare a summary, ca. 15 minutes

Watching

Reading

B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD

thesis, RWTH Aachen University, 2017.
Section 2.3, pages 8-14
Section 4.5.1.1, pages 100-101

J. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002. [optional]
Section 2.6.1, pages 53-56
Sections 2.6.2 and 2.6.3, pages 56-61 [optional]
Section 3.1.1, pages 74-77
Section 3.2.1, pages 81-84
Section 3.4, pages 97-99
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https://youtu.be/1A734g96Npk

Model predictive control

classical control (PID) predictive control

RWTHAACHEN
UNIVERSITY
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Model predictive control

schach-tipps.de, euroschach.de

RWTHAACHEN
UNIVERSITY

Informatik 11
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Model predictive control

1. Bd3
2. Qc2

schach-tipps.de, euroschach.de

RWTHAACHEN
UNIVERSITY
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Model predictive control

Further examples
Automotive systems
Aeronautic industry

See SpaceX landing, ClearSpace
Smart electricity grids
Drinking water networks
Financial engineering
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Model predictive control
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Model predictive control

14
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Model predictive control

H,—1

J* = min L.(x(t+k),x(t+k)) + Loy, (x(t+ Hp),r(t+ Hp,))+
k=1
H,—1

uz L (Au(t + k)

k=0

subject to:

x(t+1+k)=f(x(t+k),u(t+k)), k=0,...,H,—1
x(t+k)eX, k=1,...,H,—1

x(t+ Hp) € Xg,

ut+k)eld, k=0,....,.H, —1

Au(t+k)e AU, k=0,...,H, — 1

where

Au(t+k)=u(t+k)—ult+k—-1), k=0,....,H,—1, u(-1) =0
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Model predictive control

Result J* = pin p_llx(X(tvL k), x(t+ k) + Loy (x(t+ Hy),x(t + Hy))+
T H,—1
Au*(') — (Au*(t) o Au*(t 4+ Hp _ 1)) ;} Lu(Au(t + k)

subject to:

x(t+1+4+k)=f(x(t+k),ult+k)), k=0,..., H,-1
Apply x(t+k)eX, k=1,..., H,—-1

X(t + Hy) € X,

ult+k)el, k=0,..., H,—1

Au(t+k)e AU, k=0,..., H, -1

u*(t) =u(t—1)+ Au*(t), during [{,t+1) e

Au(t+k)=u(t+k)—ult+k—-1), k=0,..., H,—1,u(-1)=0
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Model predictive control — pedestrian walking

Objective |

Follow the line (minimize distance of your positions to markers on rope)

Constraints

Model: f(x,u) (position is integral of velocity)
Position: states X
Velocity:
Forwards: constant, one step per time step
Sideways: given by input change Au

Input change: max. one step per time step to either side
States: must be collision-free (with obstacles)
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Model predictive control — pedestrian walking

Parameters
Prediction horizon Hp= 3

Control horizon H, = 1
Time step duration T
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Model predictive control — pedestrian walking

Process for agent i at time k:

Form MPC optimization problem
Optimize (generate plan): X_(lllz
Act (according to the first step of the plan): ug)

Reference _9
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Model predictive control — pedestrian walking

Process for agent i at time k:

Form MPC optimization problem

Optimize (generate plan): X-(|i12

Act (according to the first step of the plan): ug)
Ax
3
2

Reference _9
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Model predictive control

MATLAB exercise

ModelPredictiveControl.m
ModelPredictiveControl _background.pdf

MPC toolbox [optional]

B. Alrifaece. MATLAB Simulation of Networked Model Predictive Control for Vehicle
Collision Avoidance, 2017. Available:

[optional]
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https://github.com/embedded-software-laboratory/control-in-networked-vehicles/tree/master/%2Bcmmn
https://doi.org/10.5281/zenodo.1252992

Sequential convex programming

Flipped classroom
Group C should prepare a summary, ca. 15 minutes

Watching

Reading

B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD

thesis, RWTH Aachen University, 2017.
Section 4.5, the introduction part, pages 99-100
Section 4.5.3, pages 110-119
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https://youtu.be/upMWYV7S1Y0

Sequential convex programming — concept

“Solves” non-convex optimization problems

ldea
Convexify non-convex parts of the objective function and constraints using convex
approximations and preserve their convex parts

Solve convex problem
Global solution
Computationally efficient

New approximation around optimal solution
Repeat until convergence
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Sequential convex programming

[ Optimization problem of MPC }

/\

[ Objective function ] [ Constraints J Restriction

/\ /\

Non-convex set

Convex Non-convex ]

[ Non-convex [ Convex

Y Y

[Lmear ProgramJ Quadratic ] [ Quadratic ] [Mlxed Integer

(LP) Program (QP) Constraints (QC) constraints (Ml)
J Relaxation
- > ~
Non-convex
QCQP [ MIQP
Convexification Convexification Anproximation
(relaxation) (restriction) PP

Semidefinite Programming Sequential Convex
Relaxation (SDPR) Programming (SCP)
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Sequential convex programming

Application to “solve” non-convex QCQPs
QCQP (Quadratic Constrained Quadratic Program)

min x!Pyx + qOTX + 1o

X

subject to: x!P,;x + q?x +7r, <0,2=1,...,m

P; is symmetric but not positive semi-definite
In the vehicle example, the collision avoidance constraints are concave functions
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Sequential convex programming — concept

“Solves” non-convex optimization problems

ldea
Convexify non-convex parts of the objective function and constraints using convex
approximations and preserve their convex parts

Solve convex problem
Global solution
Computationally efficient

New approximation around optimal solution
Repeat until convergence
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Sequential convex programming — algorithm

Algorithm 1 SCP algorithm to “solve” non-convex QCQPs

Input: A non-convex QCQP
Output: Solution vector x € R"
¢ := 1 {Iteration counter}
Determine starting point x..
Compute the objective value J,. of the non-convex program using x..
Form a convex approximation of the non-convex parts of the inequality constraints using x..
Compute the optimal solution x..1 of the resulting convex program
Compute the objective value J.y1 of the non-convex program using X.i1
if J. — J.11 < e then

return X.ii
end if
c:=c+1

. go tol4)

N
_= O
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Sequential convex programming — algorithm

Algorithm 1 SCP algorithm to “solve” non-convex QCQPs

Sta rti ng po i nt Input: A non-convex QCQP

Output: Solution vector x € R"

1: ¢:= 1 {Iteration counter}
. . . . Det c Pa— p— )
IVI a y u S e t I m e -S h Ifte d S O | u t I O n fro m j C((jrs;)?‘ézetsea;bl‘;gctli)\:rifaile J. of the non-convex program using x,
. . 4; Form a convex approximation of the non-convex parts of the inequality constraints using x..
p rev I O u S t I m e Ste p 5: Compute the optimal solution X.41 of the resulting convex program
6: Compute the objective value J.;1 of the non-convex program using x.41
7. if J. — Jc+1 < € then
. . 8: return X.41
No feasible solution wondit
Lci=c
HI 11: to4
May be bad local minimum go to
Try other starting points
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Sequential convex programming — algorithm

Algorithm 1 SCP algorithm to “solve” non-convex QCQPs

Convex approximation (local) Taput: A nomcomex QCQP

Output: Solution vector x € R"

¢ := 1 {Iteration counter}

Determine starting point x,

Compute the objective value J,. of the non-convex program using x.

Form a convex approximation of the non-convex parts of the inequality constraints using x..
Compute the optimal solution x.41 of the resulting convex program

Linearization of quadratic

constraints around X,
Best convex approximation of a concave
function is its affine approximation*

Compute the objective value J.4;1 of the non-convex program using X.41
if J.— J.11 < e then
return X.41
end if
c:=c+1
go to

— =

Affine function lies above the concave
function at all points, i.e., the affine
function is globally upper bound on the
concave function

Resulting program is a restriction of the
original one

* D. Zwick. Best Approximation by Convex Functions. The American Mathematical Monthly, 94(6):528-534, 1987.
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https://www.researchgate.net/publication/260555565_Best_Approximation_by_Convex_Functions

Sequential convex programming — algorithm

Algorithm 1 SCP algorithm to “solve” non-convex QCQPs

SOIVe Co nvex Su b-prObIem Input: A non-convex QCQP

Output: Solution vector x € R"

1: ¢:=1 {Iteration counter}

Fa St 2: Determine starting point x.
3: Compute the objective value J. of the non-convex program using x,
4: Form a convex approximation of the non-convex parts of the inequality constraints using x..

. . 5; Compute the optimal solution X.41 of the resulting convex program

Ite ra tl n g a ro u n d t h e n eW SO I u t I O n 6: Compute the objective value J.;1 of the non-convex program using x.41

7. if J, — J.11 < e then
. . 8: return+icc+1
produces solutions with lower o ondif
. . . 11: go tol4]

objective values, because convex;

and therefore, of original program
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Sequential convex programming — algorithm

Progress evaluation

» Decreases in objective value of

original problem indicate progress

Algorithm 1 SCP algorithm to “solve” non-convex QCQPs

Input: A non-convex QCQP

Output: Solution vector x € R"

¢ := 1 {Iteration counter}

Determine starting point x,

Compute the objective value J,. of the non-convex program using x.
Form a convex approximation of the non-convex parts of the inequality constraints using x..
Compute the optimal solution x.41 of the resulting convex program
Compute the objective value J.;; of the non-convex program using X.41

1:
2:
3:
4:
5:
6:

10: c:=c+1
11: go tol4]

31
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Sequential convex programming — discussion

Fast (in our applications <100ms)
Locally optimal solution of QCQP problem

SCP sub-problem is restriction of QCQP
SCP feasible implies QCQP feasible
Feasibility issues, SCP too restrictive
Solution: slack variable
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Model predictive control — vehicle example

Objective Function

Follow a predefined reference trajectory
Minimize the distances between the vehicle position and the reference trajectory

Only accept small input changes
Keep the steering angle changes as small as possible

Control and Perception in Networked and Autonomous Vehicles Rm
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Model predictive control — vehicle example

Constraints

Input constraints, do not exceed
A maximum steering angle
A maximum change of the steering angle per time step
A maximum lateral acceleration

Collision avoidance constraints
Do not collide with other vehicles or obstacles
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Sequential convex programming — vehicle example

Iteration 1

-15
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Sequential convex programming — vehicle example

Iteration 2

-15
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Sequential convex programming — vehicle example

Iteration 3

-15
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Sequential convex programming — vehicle example

Iteration 4

or O .

-15 -10 -5 0 5
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Sequential convex programming — vehicle example

Iteration 5

-15 -10 -5 0 5
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Sequential convex programming — vehicle example

Iteration 6
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Sequential convex programming — vehicle example

Iteration 7

-15
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Sequential convex programming — vehicle example

Iteration 8

-15
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Sequential convex programming — vehicle example

Convergence of SCP: ], , Progress of SCP: /.

Iteration 1 Iteration 2 1 0]_0 . . I . . . . . .
5 5 i -
5 | o
o e \ or ® ; —e— J
V) N — — — SDPR (lower bound)
-5 -5 105 F % i
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< 5 T T ~ “ f r;
0 bl 2 L Lt
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. . 5] '
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Sequential convex programming — vehicle example

Predicted and real decrease of the objective value
dj < d] because approximate program is a restriction

Iteration 1 Iteration 2
5 5
5L
— 10
= 0 0 ——————— 0 0 ————
S
-5 -5
-15 -10 -5 0 -15 f
It(‘mtlon 3 Itcrqmon 4 '
5 ' 5 ‘ I
- |
E 0 o —————— 0 ] 0 i
-~ 107 T |
-5 -5 *-5&: '
-15  -10 -5 -15 o |
Ttpmtmn 5 Ttemmon [§] = !
. s . |
= |
Planif} 0 (] ]
s |
-5 -5L |
10 -
-15  -10 -15 I
Tteration 7 Tteration 8 |
5 5 I
o= o @ Infeasible ! Feasible
\ 1 1 1 I 1 1 1 1
-5 -5
o . 1 2 3 4 5 6 7 8 9 10
[on] SCP TIterations
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Sequential convex programming — vehicle example

Convergence of the control input (control horizon = 3)

1 2 3 i | 5 6 7 8 9 10
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Sequential convex programming — vehicle example

Slack variable, progress of SCP

Iteration 1 Iteration 2 3 5 r . : : . :
5 5 J( *
‘é‘ 0 O ——————7¢ 0 0 ————
S 3r 7
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Sequential convex programming — vehicle example

Computation time

104 F ' ' 110*
i median: MIQP -

median: MILP 1
median: SCP 0
103 - | —8— max: MIQP E 103
L | —¢— max: MILP N
—&— max: SCP

Computation Time [s]

10-2 ! I t I 10-2
2 3 4 5 6

Number of Vehicles (Agents)

Informatik 11
Embedded Software

Control and Perception in Networked and Autonomous Vehicles
47 Part 3: Control Engineering and Optimization | Dr. Bassam Alrifaee




Sequential convex programming — vehicle example

Video of “Frogger” simulation
Video of experimental results
Video of trust

Vehicle racing, videos of simulation results
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https://youtu.be/_BxhYhIbORk

Sequential convex programming

MATLAB exercise
B. Alrifaee. MATLAB Simulation of Networked Model Predictive Control for Vehicle

Collision Avoidance, 2017. Available:
Function \controller\SCP_optimizer.m
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https://doi.org/10.5281/zenodo.1252992

Sequential convex programming — conclusion

SCP finds a (good) upper bound on the non-convex optimization problem
starting from the time-shifted last solution of MPC
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- Next Part



Network and Distribution

Networked model predictive control
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