

Lecture Control and Perception in Networked and Autonomous Vehicles

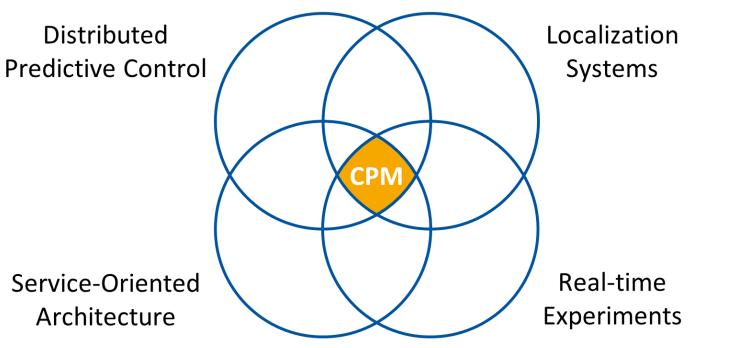
Dr. Bassam Alrifaee | Patrick Scheffe, M. Sc. | Simon Schäfer, M. Sc. Winter Semester 2023/2024

> Part 4 Network and Distribution

Course contents (CPM group course)

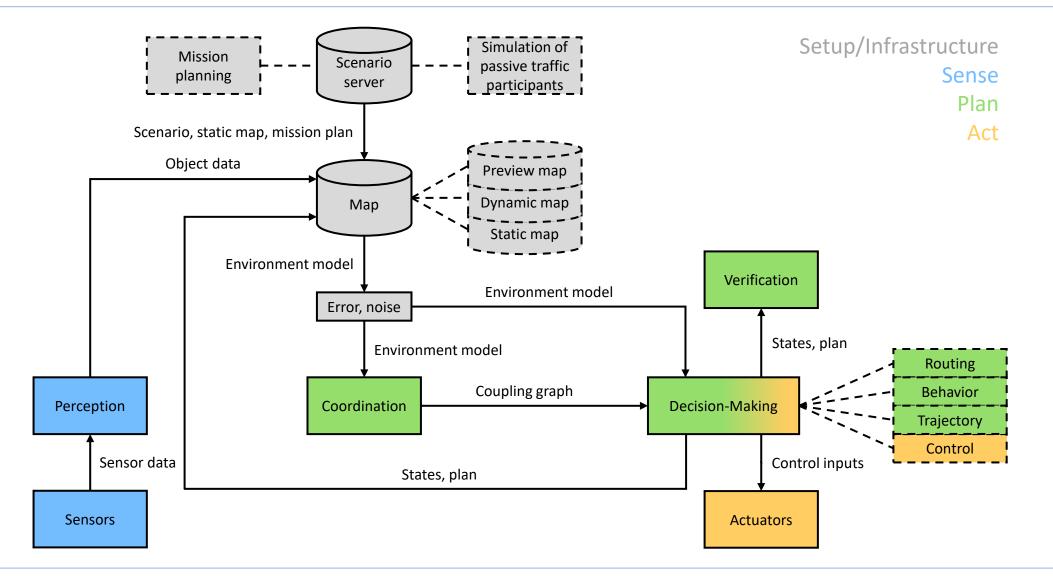
- Vehicle models
- Control and optimization
- Network and distribution
- Machine perception
- Software architectures and testing concepts

Case study

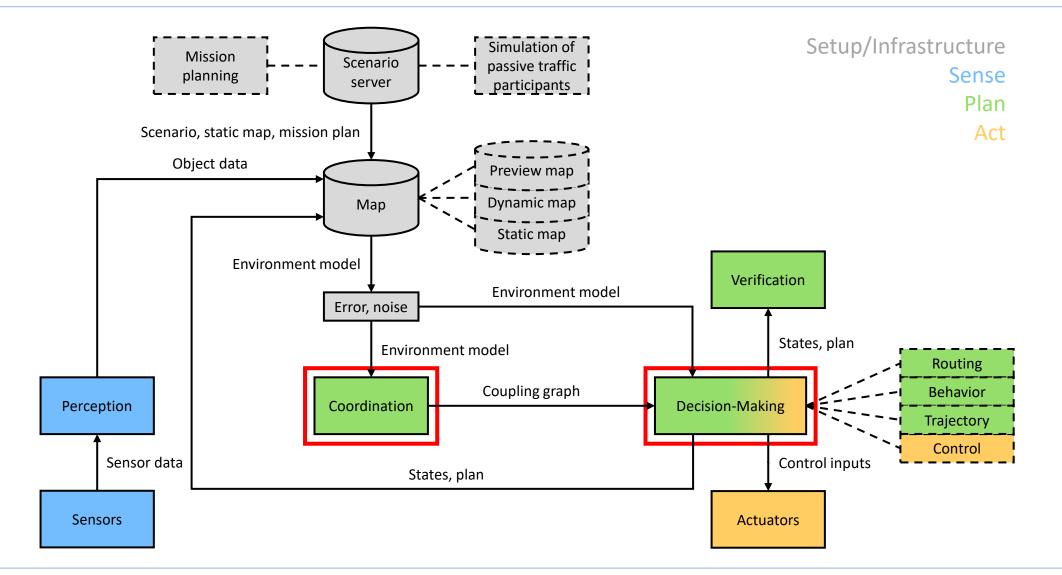


^{*}CPM: Cyber-Physical Mobility

CPM Lab architecture



CPM Lab architecture



Literature

J. Lunze. Control Theory of Digitally Networked Dynamic Systems. Springer, 2014.

Further literature (1)

J. Lunze. Networked Control of Multi-Agent Systems. Bookmundo Direct, 2019

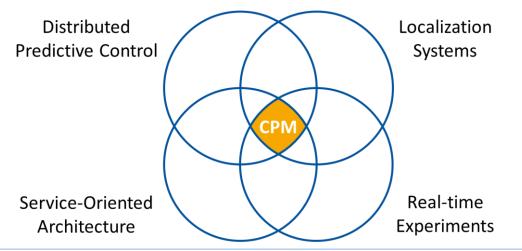
Further literature (2)

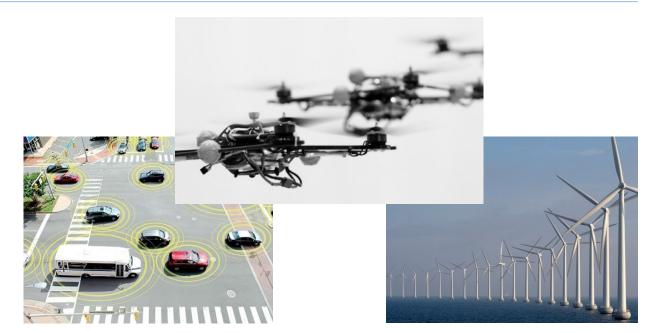
- B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD thesis, RWTH Aachen University, 2017.
- B. Alrifaee. MATLAB Simulation of Networked Model Predictive Control for Vehicle Collision Avoidance, 2017. Available: <u>https://doi.org/10.5281/zenodo.1252992</u>
- Check out our website

Definition of networked systems

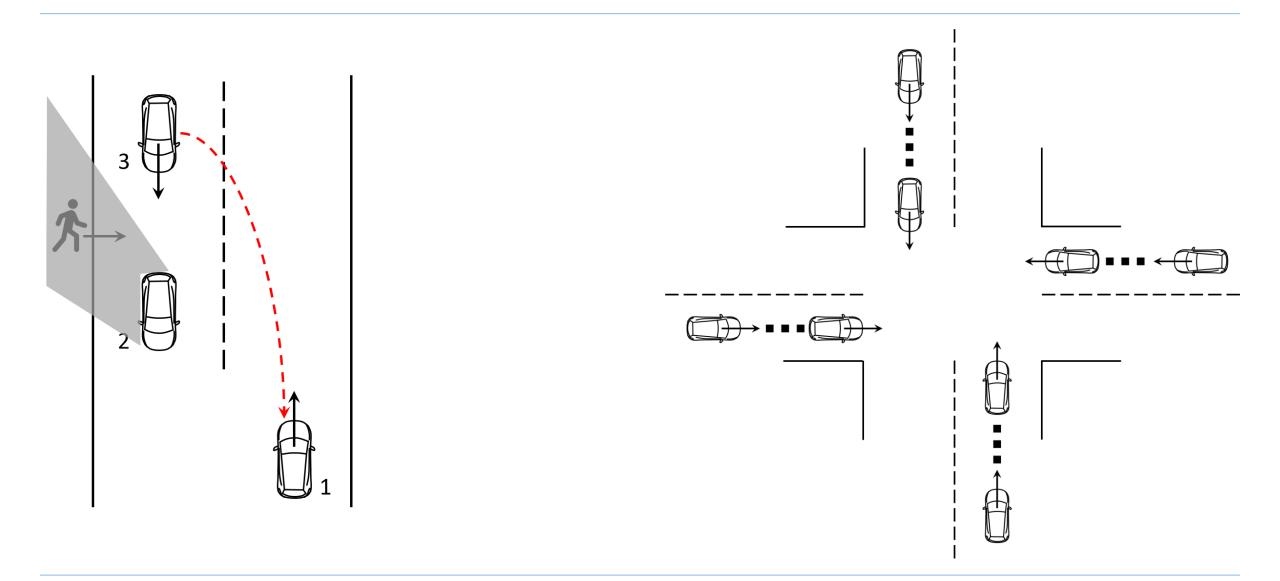
- A.k.a. connected systems
- Communicate and interact
- Improve
 - Perception
 - Decision-making

Impose challenges





Examples of improvement of perception and decision-making



Pedestrians walking

- Two pedestrians approach each other
- Avoid each other once
- Avoid each other twice

(Collide with each other)

Shibuya crossing

Beauty contest game

Setup

- Choose number between 0 and 100
- Winner = Closest to 1/2 of average

Shamma, course on game theory and distributed control, 2019

Beauty contest game

Setup

- Choose number between 0 and 100
- Winner = Closest to 1/2 of average

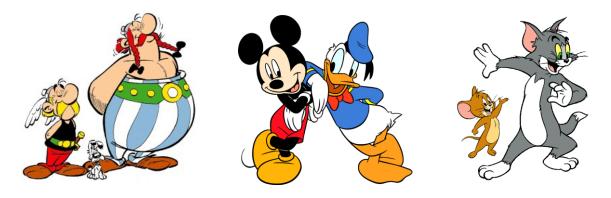
Decision quality of individuals affected by decisions of others

Shamma, course on game theory and distributed control, 2019

Beauty contest game

Setup

- Choose number between 0 and 100
- Winner = Closest to 1/2 of average
- Decision quality of individuals affected by decisions of others
- Why "beauty contest"?



Favorite characters = ???

Compare: stock market. See <u>Keynesian beauty contest</u>. See <u>A Beautiful Mind (film)</u>

Shamma, course on game theory and distributed control, 2019

Fisher problem

Story

 $x(t_0) = 100 \text{ tons}$ N = 5 number of players/groups $i = 1, \ldots, N$ player/group $u^{(i)}(t) \in \{0, \dots, 10\}$ tons $x(t+1) = 1.2 \cdot x(t) - \sum^{N} u^{(i)}(t)$ i=1Task: $\max_{u^{(i)}(\cdot)} \sum_{i} u^{(i)}(t)$, s.t. $x(t) \ge 1$, i.e., survive, $\forall t$

Thanks to L. Dörschel for the discussion

Fisher problem – discussion

- Fisher problem as MPC
 - Discuss the effect of the prediction horizon
 - The MPC algorithm is greedy, if the prediction horizon is ...

This lecture

 $x(t_0) = 0$ participants N = 30 number of participants $i = 1, \ldots, N$ participant $u^{(i)}(t) \in \{0, 1\}$ $x(t+1) = \sum_{i=1}^{N} u^{(i)}(t)$ i=1Task: $\min_{u^{(i)}(\cdot)} \sum_{t} u^{(i)}(t)$, s.t. $x(t) \ge 18, \forall t$

16 Control and Perception in Networked and Autonomous Vehicles Part 4: Network and Distribution | Dr. Bassam Alrifaee

This lecture – discussion

- This lecture as MPC
 - How long is the prediction horizon?
 - What is the best strategy?

 $x(t_0) = 0$ infected N = 80M number of population $i = 1, \dots, N$ population $u^{(i)}(t) \in \{0, 1\}$

$$x(t+1) = x(t) + R_{in}x(t) - R_{out}x(t), \text{ where } R_{in}x(t) = \sum_{i=1}^{N} u^{(i)}(t)$$

Task: $\max_{u(t)} \sum_{i=1}^{N} u^{(i)}(t), \text{ s.t. } R_{intensive}x(t) \le 3,000, \forall t$

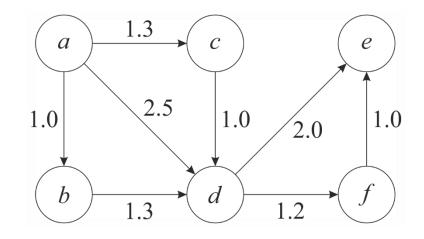
18Control and Perception in Networked and Autonomous Vehicles
Part 4: Network and Distribution | Dr. Bassam Alrifaee

COVID-19 pandemic – discussion

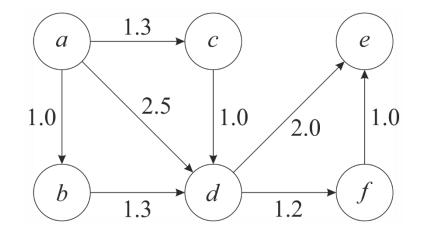
- COVID-19 pandemic as MPC
 - Discuss the effect of the prediction horizon

Graph theory

- Powerful tool for modeling and analyzing networked systems
- Reading
 - B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD thesis, RWTH Aachen University, 2017.
 - Section 2.2, pages 5-7
- Definitions
- MATLAB exercise

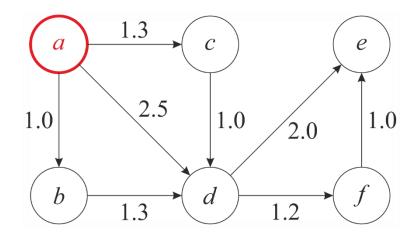


- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- Output: shortest paths between a and all other reachable nodes from a



- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

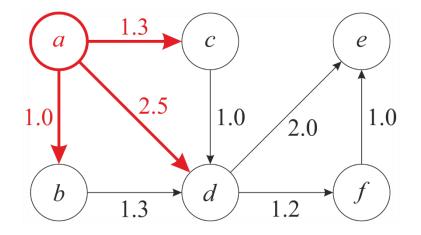
Vertex	Done	Distance	From
a	Yes	0	
b	No	∞	
С	No	∞	
d	No	∞	
е	No	∞	
f	No	∞	



Q = []

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

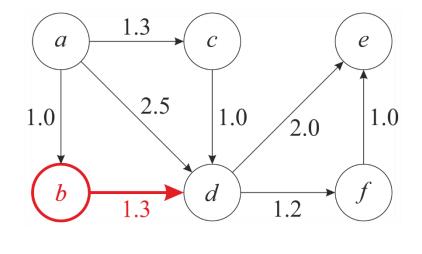
Vertex	Done	Distance	From
a	Yes	0	
b	No	1.0	a
С	No	1.3	a
d	No	2.5	a
e	No	∞	
f	No	∞	



Q = [b, c, d]

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

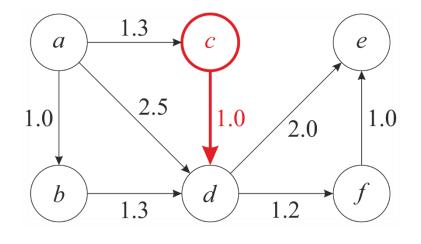
Vertex	Done	Distance	From
a	Yes	0	
b	Yes	1.0	a
С	No	1.3	a
d	No	2.3	b
e	No	∞	
f	No	∞	



 $Q = [\mathbf{b}, c, d]$

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

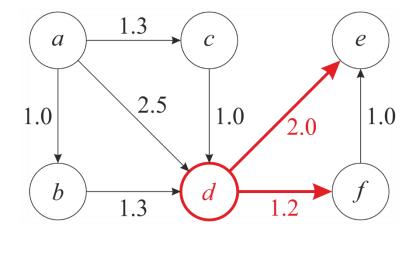
Vertex	Done	Distance	From
a	Yes	0	
b	Yes	1.0	a
С	Yes	1.3	a
d	No	2.3	b
e	No	∞	
f	No	∞	



 $Q = [\mathbf{b}, \mathbf{c}, d]$

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

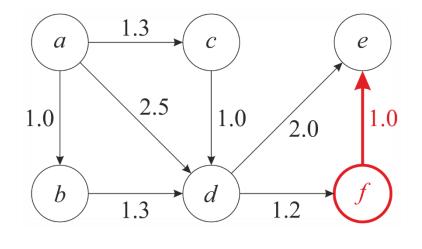
Vertex	Done	Distance	From
a	Yes	0	
b	Yes	1.0	a
С	Yes	1.3	a
d	Yes	2.3	b
e	No	4.3	d
f	No	3.5	d



 $Q = [\mathbf{b}, \mathbf{c}, \mathbf{d}, e, f]$

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

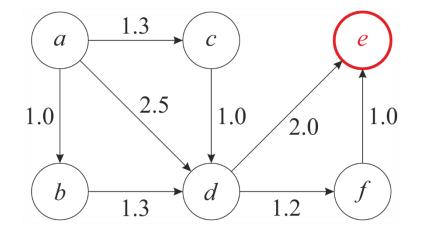
Vertex	Done	Distance	From
a	Yes	0	
b	Yes	1.0	a
С	Yes	1.3	a
d	Yes	2.3	b
e	No	4.3	d
f	Yes	3.5	d



 $Q = [\mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}]$

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

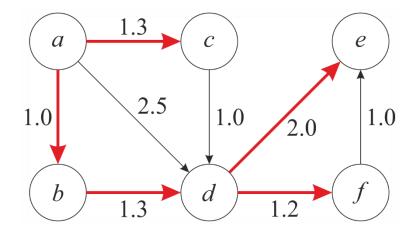
Vertex	Done	Distance	From
a	Yes	0	
b	Yes	1.0	a
С	Yes	1.3	a
d	Yes	2.3	b
e	Yes	4.3	d
f	Yes	3.5	d



 $Q = [\mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}]$

- Dijkstra's algorithm for finding the shortest paths between nodes in a graph
- Input: graph with positive edge weights and a starting vertex a
- **Output:** shortest paths between *a* and all other reachable nodes from *a*

Vertex	Done	Distance	From
a	Yes	0	
b	Yes	1.0	a
С	Yes	1.3	a
d	Yes	2.3	b
e	Yes	4.3	d
f	Yes	3.5	d



Computation: $O(N \log(N) + M)$

Networked model predictive control

Flipped classroom

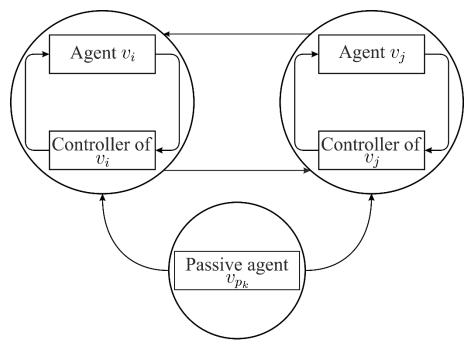
- Group D should prepare a summary, ca. 15 minutes
- Reading
 - B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD thesis, RWTH Aachen University, 2017.
 - Chapter 3, pages 20-51

Networked control systems (NCS)

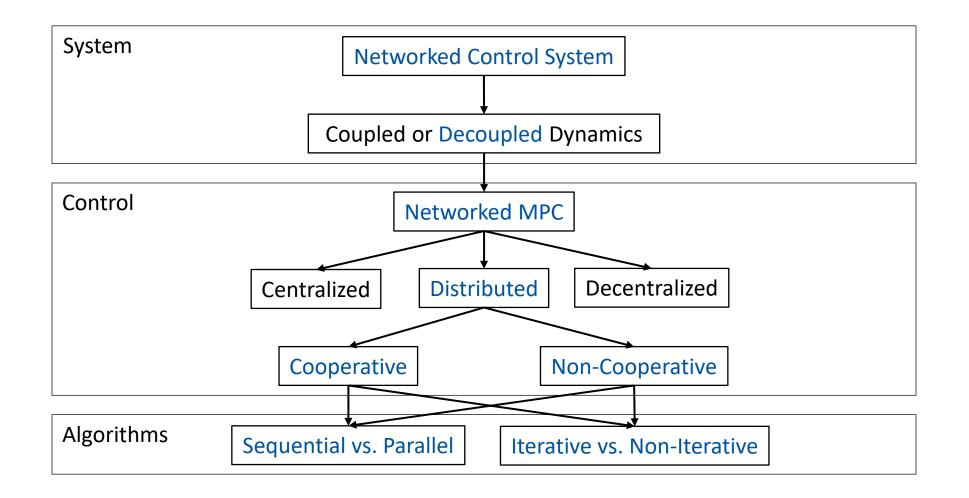
NCS consist of interacting agents (dynamic subsystems)

NCS

- Passive agents
 - Dynamic subsystems without networked control
 - Data communication to active agents
- (Active) Agents
 - Data exchange
 - Achieve their goals while taking the interaction with other agents into consideration
 - Full knowledge about passive agents and their future states
- Classification of agents as a step to full automation of NCS and consideration of non-automatable agents
- Communication restrictions, e.g., time delays, and computation time affect stability and performance
- Network: time-invariant or time-variant



nformatik 11



NCS classification

- Control strategy: combination of a control method and the algorithm applied to it
- Selection of control strategy based on:
 - NCS categories in the system level
 - Available computation time
 - Communication requirements

Computation time: time required for the whole NCS to reach a solution at a given time step, i.e.,

- Measure the states
- Formulate and solve the optimization problem
- Apply the inputs to all agents
- Communication of required data

Sequence depends on the control strategy

Networked model predictive control

Method

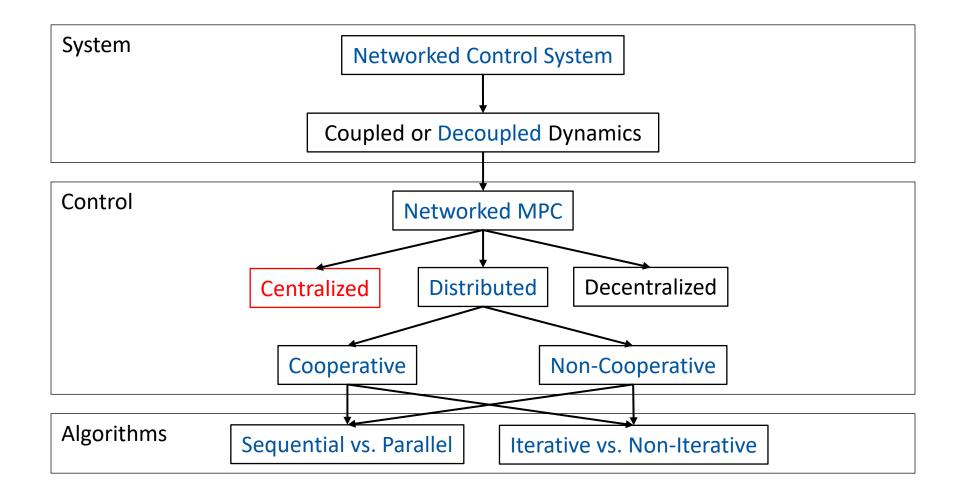
- Enhancing feasibility (safety and efficiency)
- Reducing computation time and communication

Formulation of Net-MPC: basic formulation

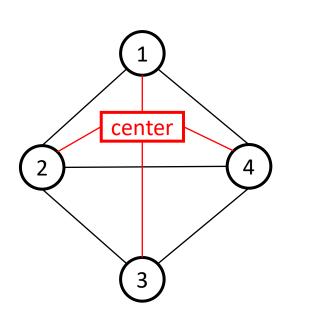
Strength of Net-MPC: Making decisions while considering $\sum_{k=1}^{J^{(i)^{\star}}} = \min_{\Delta \mathbf{u}^{(i)}(\cdot)}$ plans of agents $J^{(i)^{\star}} = \min_{\Delta \mathbf{u}^{(i)}(\cdot)}$ $\sum_{k=1}^{H_p-1} l_x^{(i)} (\mathbf{x}^{(i)}(t+k), \mathbf{r}^{(i)}(t+k)) + l_{xH_p}^{(i)} (\mathbf{x}^{(i)}(t+H_p), \mathbf{r}^{(i)}(t+H_p)) + l_{xH_p}^{(i)} (\mathbf{x}^{(i)}(t+H_p)) + l_{xH_p}^{(i)} (\mathbf{x}^{(i)}(t+H_p))$

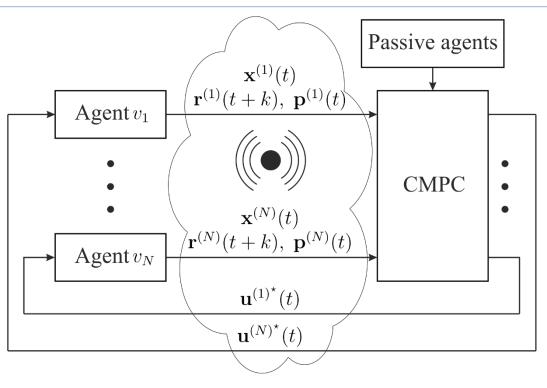
$$\sum_{k=0}^{H_u-1} l_u^{(i)}(\Delta \mathbf{u}^{(i)}(t+k)) + \sum_{\substack{j \ v_j \in \mathcal{V}^{(i)}}} \sum_{k=1}^{H_p} c_o^{(i,j)}(\mathbf{x}^{(i)}(t+k), \mathbf{x}^{(j)}(t+k))$$

subject to
$$(\forall v_j \in \mathcal{V}^{(i)}, \forall v_p \in \mathcal{V}_p^{(i)})$$
:
 $\mathbf{x}^{(i)}(t+1+k) = f^{(i)}(\mathbf{x}^{(i)}(t+k), \mathbf{u}^{(i)}(t+k)), k = 0, \dots, H_p - 1$
 $\mathbf{x}^{(i)}(t+k) \in \mathcal{X}^{(i)}, k = 1, \dots, H_p - 1$
 $\mathbf{x}^{(i)}(t+H_p) \in \mathcal{X}_{H_p}^{(i)}$
 $\mathbf{u}^{(i)}(t+k) \in \mathcal{U}^{(i)}, k = 0, \dots, H_u - 1$
 $\Delta \mathbf{u}^{(i)}(t+k) \in \Delta \mathcal{U}^{(i)}, k = 0, \dots, H_u - 1$
 $c_c^{(i,j)}(\mathbf{x}^{(i)}(t+k), \mathbf{x}^{(j)}(t+k)) \leq 0, k = 1, \dots, H_p$
 $c_c^{(i,p)}(\mathbf{x}^{(i)}(t+k), \mathbf{x}^{(p)}(t+k)) \leq 0, k = 1, \dots, H_p$



Net-MPC: centralized MPC



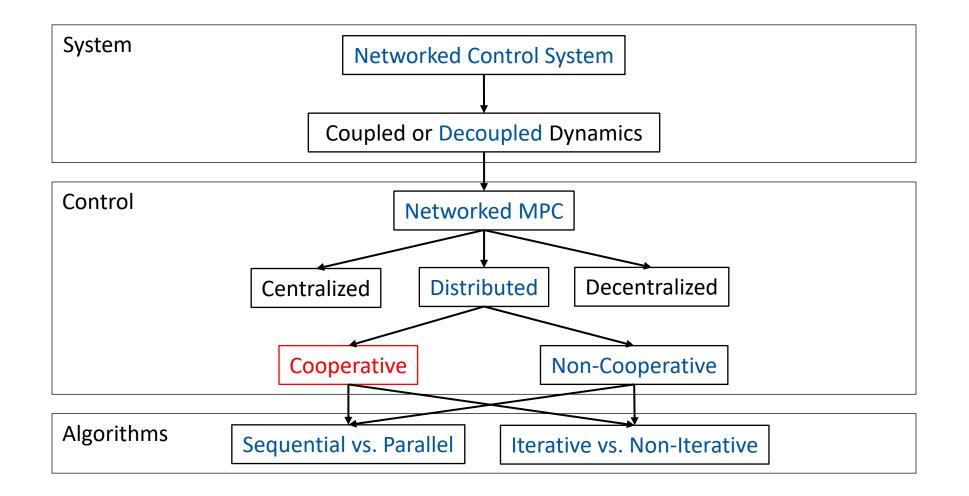


- Not applicable in practice due to
 - High computation time
 - Safety hazards

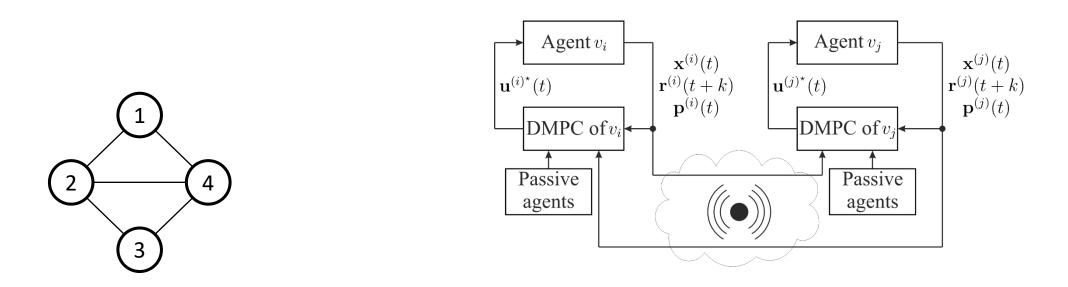
Benchmark for comparing different distributed MPC strategies

Net-MPC: terms

- NCS performance
 - NCS stability, solution feasibility, solution optimality, solution quality
- A NCS is *stable* if each of its agents is stable in the network
- A solution is *agent-feasible* if each agent's controller generates a feasible solution in terms of its own optimization problem
- A solution is *NCS-feasible* if it is feasible in terms of a corresponding CMPC
- A solution is *agent-optimal* if each single agent's controller generates an optimal solution in terms of its own optimization problem
- A solution is *NCS-optimal* if it is optimal in terms of a corresponding CMPC
- The NCS-quality is defined as the quality of a solution compared with the solution of CMPC
- Assumption: a solution to CMPC exists and it is NCS-stable, -feasible, and -optimal



Net-MPC: cooperative distributed MPC



Decomposition of centralized MPC into smaller optimization problems

Each agent just considers hypothetical plans of its neighbors

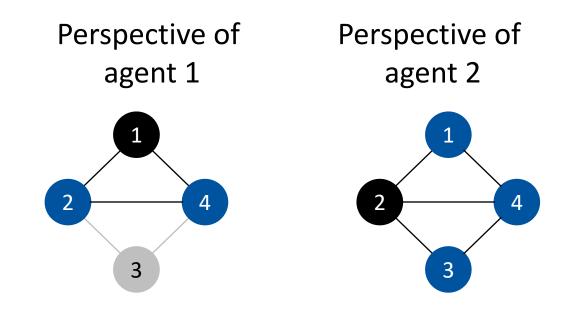
Prediction consistency

- Prediction consistency means that the predictions x^(j)(t+k), k=1,...,H_p used or computed in the optimization problem of an agent v_i at a time instance t for an agent v_j coincide with the predictions computed by agent v_j itself at the same time instance t
- Without satisfaction of this property, no guarantee for NCS-stability and feasibility
- Coop. DMPC does not satisfy the prediction consistency property
 - Exception: if the NCS is fully connected
 - Coop. DMPC becomes CMPC except the communication structures
 - High computation time

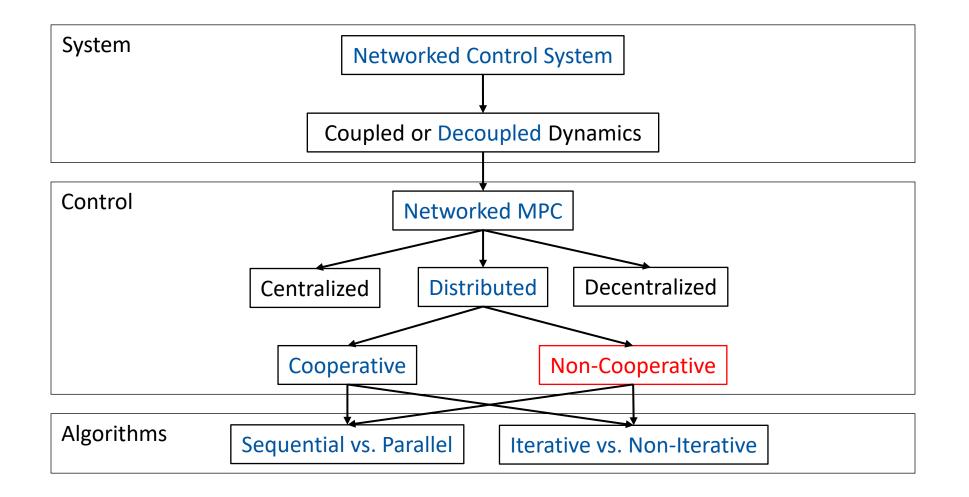
Net-MPC: cooperative distributed MPC

Local System Knowledge

- Agent 1 considers (hypothetical) plans of
 - Agents 1, 2, 4, 3
- Agent 2 considers (hypothetical) plans of
 - Agents 2, 1, 3, 4



Prediction consistency of plans is essential property



Objective J

- Follow the line (minimize distance of your positions to markers on rope)

Constraints

- Model: f(x, u) (position is integral of velocity)
 - Position: states x
 - Velocity:
 - Forwards: constant, one step per time step
 - Sideways: given by input change $\Delta {f u}$
- Input change: max. one step per time step to either side
- States: must be collision-free (with obstacles, other pedestrians' predicted positions)

Parameters

- Prediction horizon $H_p = 3$
- Control horizon $H_u = 1$
- Time step duration T_s

- Process for agent i:
 - 1. Form MPC optimization problem (coupling constraints)
 - 2. Optimize (generate plan): $\mathbf{x}_{\cdot|k}^{(i)}$
 - 3. Communicate plan
 - 4. Act (according to the first step of the plan): $\mathbf{u}_{k}^{(i)}$

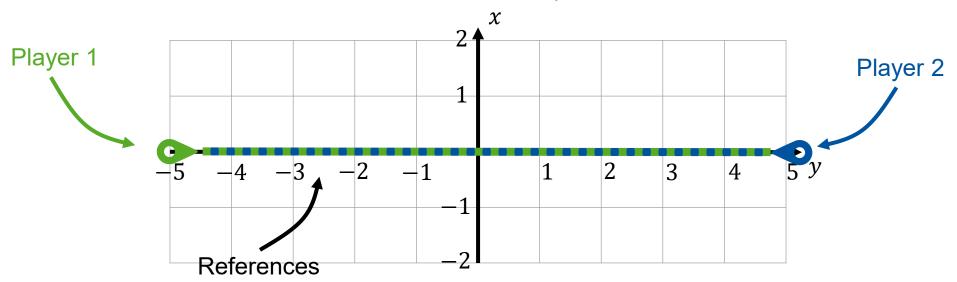
• How to get other pedestrians' (j) predicted positions $\mathbf{x}_{\cdot|k}^{(j)}$

> Communicated plan from previous time step $\mathbf{x}_{\cdot|k-1}^{(J)}$

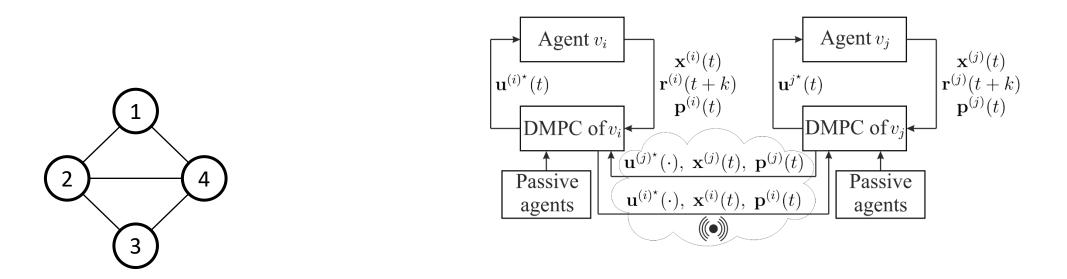
- First entry is from the past (k-1)
- Entry for end of prediction horizon ($k + H_p$) is missing

> Predict using model, assume input $\Delta \mathbf{u}_{k+H_p-1} = 0$

- Process for agent i:
 - 1. Form MPC optimization problem (coupling constraints)
 - 2. Optimize (generate plan): $\mathbf{x}_{\cdot|k}^{(i)}$
 - 3. Communicate plan
 - 4. Act (according to the first step of the plan): $\mathbf{u}_k^{(i)}$



Net-MPC: non-cooperative distributed MPC



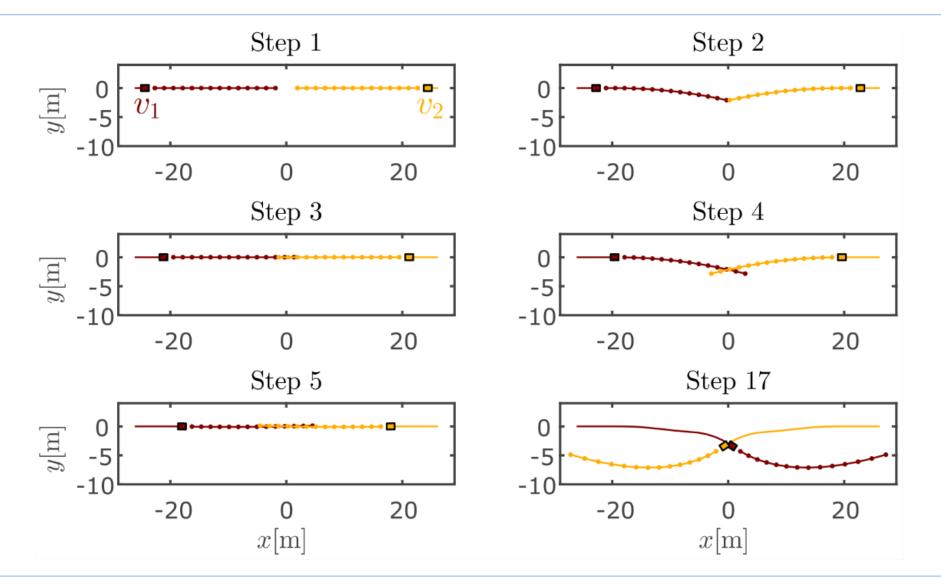
Decomposition of centralized MPC into smaller optimization problems

- Consideration only of the own objective function, own constraints, and the coupling objectives and constraints with neighbors (greedy algorithm)
- \blacktriangleright Use of communicated optimized predictions from neighbors \rightarrow time delay

Prediction consistency

- Prediction consistency means that the predictions x^(j)(t+k), k=1,...,H_p used or computed in the optimization problem of an agent v_i at a time instance t for an agent v_j coincide with the predictions computed by agent v_j itself at the same time instance t
- Without satisfaction of this property, no guarantee for NCS-stability and feasibility
- Non-Coop. DMPC does not satisfy the prediction consistency property due to the time delay in the communication

Net-MPC: non-cooperative distributed MPC

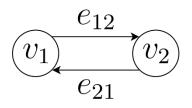


Net-MPC: non-cooperative distributed MPC

Coupling graph

- Coupling graph contains cycles
 - Consideration of exactly the same coupling

Cycles in coupling graph lead to loss of prediction consistency property



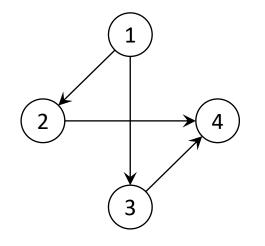
Solutions:

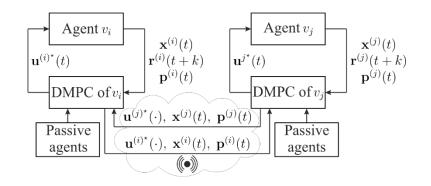
- Solve in sequence and iterate \rightarrow high computation time
- Priority-Based Non-Cooperative Distributed MPC

Networked model predictive control

Flipped classroom

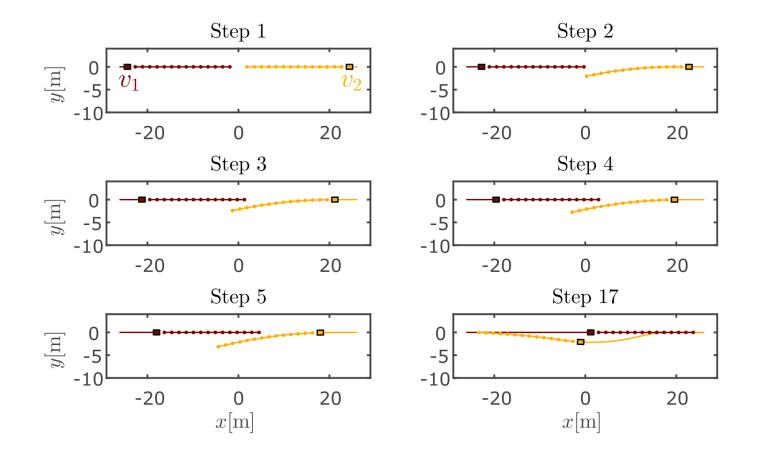
- Group E should prepare a summary, ca. 15 minutes
- Reading
 - B. Alrifaee. Networked Model Predictive Control for Vehicle Collision Avoidance. PhD thesis, RWTH Aachen University, 2017.
 - Chapter 3, pages 51-77





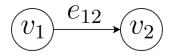
- Assign agents distinct priorities
- Lower priority value corresponds to a higher priority
- Passive agents have the highest priority
- Consideration of the own objective function, constraints, and only the coupling objectives and constraints with higher priority agents

Example: Non-Coop. DMPC vs. PB-Non-Coop. DMPC



Coupling graph

 \blacktriangleright Directed acyclic coupling graph (DAG) \rightarrow proof using adjacency matrix



Time delay of predictions of higher priority neighbors

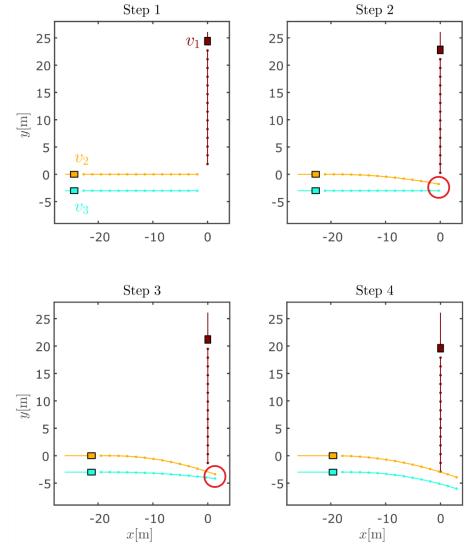
- Done in the case of time-invariant coupling topology and assuming bounded disturbances in higher priority neighbors
- Loss of the prediction consistency property in the case of a time-variant coupling topology

57

- Vehicles move with the same velocity
- Priorities
 - v_1 First
 - v_2 Second
 - v_3 Third
- Time delay of one time step

Solutions:

- Infinite prediction horizon → not implementable in real-time
- Incorporating a sequential algorithm into the PB-Non-Coop. DMPC strategy



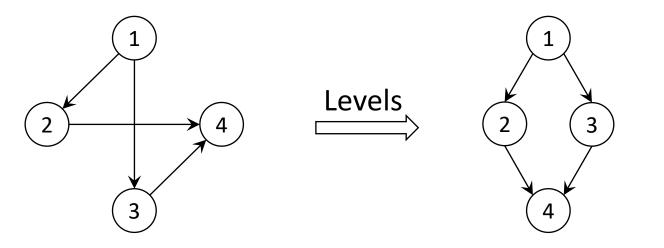
nformatik 11

Sequential algorithm based on coupling graph

- Priorities generate a partial order
- Converting the partial order into a topological order
 - Renumbering the vertices of the coupling graph with their corresponding priorities
 - Valid sequence for solving the optimization problems
 - Possible if the coupling graph is DAG (proven)
- ► Our topological order is not unique → parallelization of subsets of the optimization problems possible

Algorithm to determine parallelizable vertices

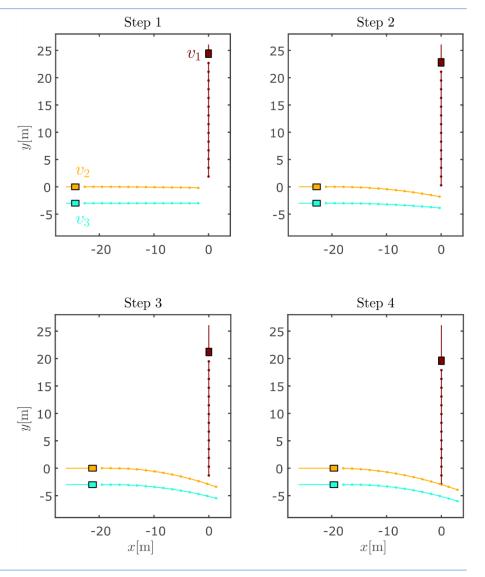
- Input: adjacency matrix of a DAG
- Output: parallelizable vertices saved in a matrix L



 $\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

- Rules of parallel and sequential computation:
 - Agents on the same level solve in parallel
 - If disturbances of agents on the first level are negligible, agents on the first and second level solve in parallel
 - Agents on level $3 \le i \le N_l$ solve sequentially after agents on level i 1
 - The algorithm is executed repeatedly in the case of a change in the coupling graph

- \blacktriangleright Vehicles v_1 and v_2 solve in parallel
- \blacktriangleright Vehicle v_3 solves after v_1 and v_2
- Satisfaction of the prediction consistency property



Stability and feasibility discussion

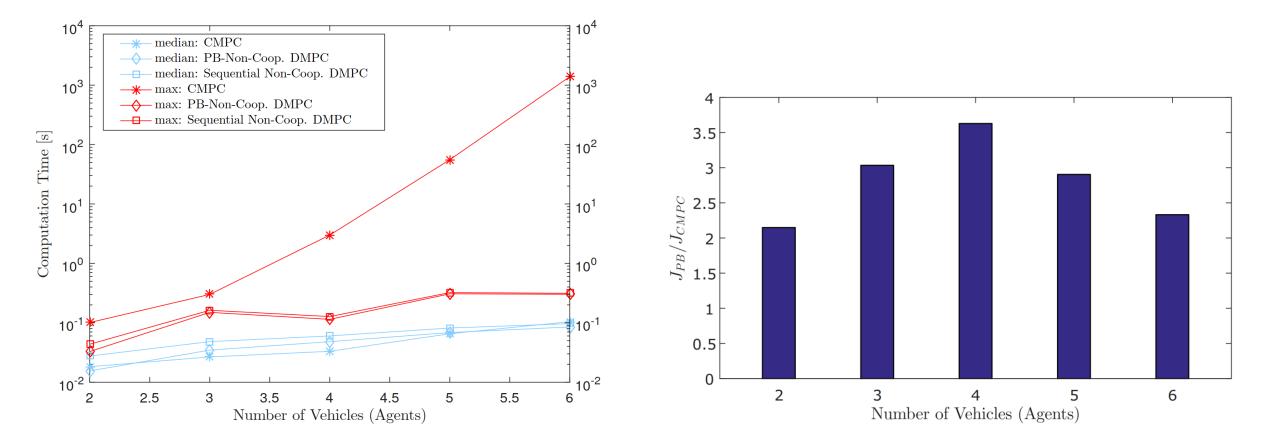
- Main assumptions
 - A centralized MPC would generate a solution in each sample time that is NCS-stable, -feasible, and -optimal
 - Considering each agent as isolated from NCS, the solutions of PB-Non-Coop. DMPC are agent-stable, -feasible and -optimal
- ► Satisfaction of the prediction consistency property in any NCS even with time delays and time-variant coupling topology → Proof using mathematical induction
- Convergence after only one iteration of sequence

Optimization time of NCS in different Net-MPC strategies

Control Strategy	Optimization Time
CMPC	T_{ot}
Coop. DMPC	$T_{ot} = \max T_{ot}(v_i), \ \forall v_i \in \mathcal{V}$
PB-Non-Coop. DMPC	$T_{ot} = \max_{i \in level_{1,2}} T_{ot}(v_i) + \sum_{j=3}^{N_l} \max_{i \in level_j} T_{ot}(v_i)$
Sequential iterative DMPC	$T_{ot} = \sum_{1}^{N_{iter}} \sum_{i=1}^{N} T_{ot}(v_i)$

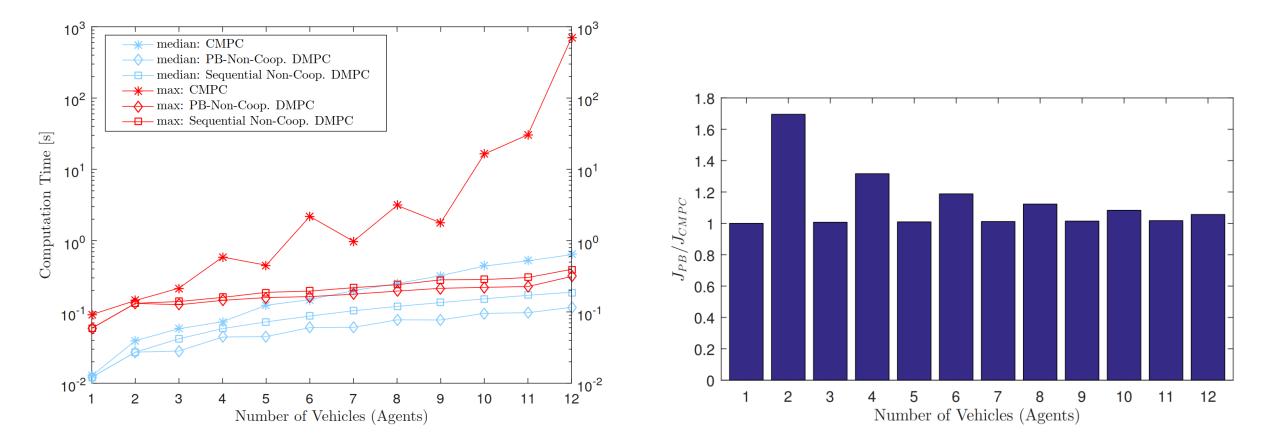
Net-MPC: comparison

► Testing scenario *N*-circle, mean objective values normalized



Net-MPC: comparison

► Testing scenario *N*-parallel, mean objective values normalized



Net-MPC: application to vehicle decision-making

- The application to vehicle decision-making combines high-level control methodologies and requirements of autonomous vehicles within a networked framework
- Networked vehicles are dynamically decoupled agents
- Couplings are functions of a subset of the states of a vehicle and a subset of the states of its neighbors
- (Active) agents are vehicles and passive agents are obstacles
- Net-MPC unifies collision detection, avoidance trajectory planning, and trajectory following in one optimization problem
- Efficient method to find a solution to the (in general non-convex) optimization problem of vehicle decision-making

Vehicle examples

- Video of simulation results
 - https://youtu.be/zS3UBx09O6M
- Video of experimental results
 - https://youtu.be/X2syxG5GI6g
- Further simulation results
 - https://youtu.be/XGql8FrjW6I
 - https://youtu.be/7sq3N8vwusA
 - https://youtu.be/kbooJFK52Fg

Summary

- Developed for NCS consisting of dynamically decoupled agents
- Coupling in the objective function or in the constraints
- Consideration of time-variant coupling

- Satisfaction of prediction consistency property
- NCS-stable and -feasible
- Reduction of the computation time

Moral machine

Discussion of moral machine

Next Part

Guest lecture, then machine perception

- Guest lecture with Patrick Scheffe
- Machine perception with Alexandru Kampmann and Simon Schäfer

