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Course contents (CPM group course)

► Vehicle models

► Control and optimization

► Network and distribution

► Machine perception

► Software architectures 
and testing concepts

► Case study
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Lab architecture
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Agenda

► Sensors & Environment Models

► Computer Vision Basics: Classic Problems & Approaches

► Machine Learning Basics

► Deep Learning Basics
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Perception Basics: Sensors & Environment Models
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Perception Basics

6

How Google self-driving car sees a road - https://www.youtube.com/watch?v=MqUbdd7ae54
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Perception Basics

► Environment model with 
dynamic and static elements

► Input form sensors and offline 
maps (localization)

► Basis for decision making, 
trajectory planning, control 
etc.
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Sensors – Light Detection and Ranging (LIDAR)

► Illuminate target with laser and measure 
round-trip-time, wavelength shift

► Point cloud {[𝑥, 𝑦, 𝑧, 𝑖]} with intensity i 

► Typical sampling rate 10-15Hz

► Range 100m – 300m

► Expensive!

8



Control and Perception in Networked and Autonomous Vehicles
Part 5: Machine Perception | Alexandru Kampmann M.Sc. | Dr.-Ing. Bassam Alrifaee

Sensors – Light Detection and Ranging (LIDAR)

► Illuminate target with Laser and measure 
Round-Trip-Time, Wavelength shift

► Point cloud {[𝑥, 𝑦, 𝑧, 𝑖]} with intensity i 

► Typical Sampling Rate 10-15Hz

► Range 100m – 300m

► Expensive!
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Sensors – Stereo Vision

10

► Depth estimation from two mono 
cameras

► Correspondences in Left/Right 
Images yields depth estimation

► Issues with matching can lead to 
wrong depth estimates

► In contrast to LIDAR no active 
distance measurement, but cheaper 
and higher frequency
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Sensors – Radar

11

► Emmits pulsed electromagnetic 
wave 

► Objects reflect wave back to radar 
antenna

► Provides accurate measurement of
▪ relative position of object
▪ range to object
▪ velocity

Bosch
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No Sensor is perfect - Combination necessary
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LIDAR Stereo Camera RADAR

sparse point cloud, becomes 
worse for larger distances

rich semantic information no semantic information

precise range measurement estimated range information
precise range measurement, 

mostly for metal objects

robust at day and night, but 
deteriorates in rain or snow

deteriorating performance at 
night

insensitive to weather 
conditions

very expensive comparatively cheap comparatively cheap

low update rate, 10 Hz high update rate high update rate
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DARPA Urban Challenge Winner – Boss (2006)
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Environment Models

14

► Model describes environment in a suitable way for further algorithmic 
processing (i.e. decision making, path planning, control, …)

► We will learn about two common environment representations
▪ Occupancy Grid Mapping 
▪ Object Lists
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Occupancy Grid Mapping

► Discretize world in cells of, e.g., 5x5cm 

► Each cell is either occupied or free

► Use range finder (LIDAR, Stereo 
Camera, Ultrasound, …) to determine 
state of cell while robot moves 
through the environment

15
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Occupancy Grid Mapping

16

S. Hoermann, P. Henzler, M. Bach and K. Dietmayer, "Object Detection on Dynamic Occupancy Grid Maps Using Deep Learning and Automatic Label 

Generation," 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, 2018, pp. 826-833, doi: 10.1109/IVS.2018.8500677.
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Occupancy Grid Mapping

► Assumptions here: cell is either completely free or occupied, world is static, 
individual cells are independent of each other

► Sensor noise: cell occupancy modelled as binary random variable 𝑚𝑡
[𝑥,𝑦]

► Occupancy measurements are obtained at time 𝑡 as 𝑧𝑡
[𝑥,𝑦]

~ {0, 1}
▪ 0 – free, 1 – occupied 

𝑚1,1 𝑚1,2 𝑚1,3 …

𝑚2,3

…

𝑅𝑜𝑏𝑜𝑡 𝑚𝑥,𝑦

17

𝑚𝑡
[𝑥,𝑦]

: 𝑓𝑟𝑒𝑒, 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 → 0,1

𝑝 𝑚𝑡
[𝑥,𝑦]

= 1 | 𝑧1:𝑡
[𝑥,𝑦]
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Occupancy Grid Mapping

► Probabilistic measurement model p 𝑧𝑡
𝑥,𝑦

𝑚𝑡
𝑥,𝑦

▪ p 𝑧𝑡
𝑥,𝑦

= 1 𝑚𝑡
𝑥,𝑦

= 1  – True occupied

▪ p 𝑧𝑡
𝑥,𝑦

= 0 𝑚𝑡
𝑥,𝑦

= 1 – False free

▪ p 𝑧𝑡
𝑥,𝑦

= 1 𝑚𝑡
𝑥,𝑦

= 0 – False occupied

▪ p 𝑧𝑡
𝑥,𝑦

= 0 𝑚𝑡
𝑥,𝑦

= 0  – True free

18
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Occupancy Grid Mapping

► Probabilistic measurement model p 𝑧𝑡
𝑥,𝑦

𝑚𝑡
𝑥,𝑦

▪ p 𝑧𝑡
𝑥,𝑦

= 1 𝑚𝑡
𝑥,𝑦

= 1 = 0.9 

▪ p 𝑧𝑡
𝑥,𝑦

= 0 𝑚𝑡
𝑥,𝑦

= 1 = 1 − p 𝑧𝑡
𝑥,𝑦

= 1 𝑚𝑡
𝑥,𝑦

= 1 = 0.1

▪ p 𝑧𝑡
𝑥,𝑦

= 1 𝑚𝑡
𝑥,𝑦

= 0 = 0.2

▪ p 𝑧𝑡
𝑥,𝑦

= 0 𝑚𝑡
𝑥,𝑦

= 0 = 1 − p 𝑧𝑡
𝑥,𝑦

= 1 𝑚𝑡
𝑥,𝑦

= 0 = 0.8

19
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Occupancy Grid Mapping – Basic Framework

► Recursive State Estimation of 𝑝 𝑚𝑡
[𝑥,𝑦]

| 𝑧1:𝑡
[𝑥,𝑦]

20

𝑝 𝑚𝑡
[𝑥,𝑦]

| 𝑧1:𝑡
[𝑥,𝑦]

=
p 𝑧𝑡

𝑥,𝑦
| 𝑚𝑡

𝑥,𝑦
, 𝑧1:𝑡−1

𝑥,𝑦
p 𝑚𝑡

𝑥,𝑦
| 𝑧1:𝑡−1

𝑥,𝑦

p 𝑧𝑡
𝑥,𝑦

|𝑧1:𝑡−1
𝑥,𝑦

= p 𝑧𝑡
𝑥,𝑦

| 𝑚𝑡
𝑥,𝑦

, 𝑧1:𝑡−1
𝑥,𝑦

p 𝑚𝑡
𝑥,𝑦

| 𝑧1:𝑡−1
𝑥,𝑦

𝜂

= p 𝑧𝑡
𝑥,𝑦

| 𝑚𝑡
𝑥,𝑦

p 𝑚𝑡
𝑥,𝑦

| 𝑧1:𝑡−1
𝑥,𝑦

𝜂

= p 𝑧𝑡
𝑥,𝑦

| 𝑚𝑡
𝑥,𝑦

p 𝑚𝑡−1
𝑥,𝑦

| 𝑧1:𝑡−1
𝑥,𝑦

𝜂

already incorporated in 𝑚𝑡
𝑥,𝑦

Prior from previous timestep
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Occupancy Grid Mapping – Example 

► Measurement model

▪ p 𝑧𝑡
𝑥,𝑦

= 1 𝑚𝑡
𝑥,𝑦

= 1 = 0.9, p 𝑧𝑡
𝑥,𝑦

= 0 𝑚𝑡
𝑥,𝑦

= 1 = 0.1

▪ p 𝑧𝑡
𝑥,𝑦

= 1 𝑚𝑡
𝑥,𝑦

= 0 = 0.2, p 𝑧𝑡
𝑥,𝑦

= 0 𝑚𝑡
𝑥,𝑦

= 0 = 0.8

► Reminder 𝑝 𝑚𝑡
[𝑥,𝑦]

| 𝑧1:𝑡
[𝑥,𝑦]

= p 𝑧𝑡
𝑥,𝑦

| 𝑚𝑡
𝑥,𝑦

p 𝑚𝑡−1
𝑥,𝑦

| 𝑧1:𝑡−1
𝑥,𝑦

0.5 0.5 0.5 …

0.5

…

𝑅𝑜𝑏𝑜𝑡 𝑚𝑥,𝑦

0.5 0.5 0.81 …

0.12

…

𝑅𝑜𝑏𝑜𝑡 𝑚𝑥,𝑦

𝑝 𝑚1
1,3 = 0 | 𝑧1

1,3= 1 = 𝜂 ∗ 0.2 ∗ 0.5 = 0.19

𝑝 𝑚1
1,3 = 1 | 𝑧1

1,3= 1 = 𝜂 ∗ 0,9 ∗ 0.5 = 0.81

𝜂 =
1

0.5 ∗ 0.2 + 0.9 ∗ 0.5
=

1

0.55

𝑝 𝑚1
2,3 = 1 | 𝑧1

2,3= 0 = 𝜇 ∗ 0.1 ∗ 0.5 = 0.12

𝑝 𝑚1
2,3 = 0 | 𝑧1

2,3= 0 = 𝜇 ∗ 0.8 ∗ 0.5 = 0.88

𝜂 =
1

0.1 ∗ 0.5 + 0.8 ∗ 0.5
=

1

0.45

21



Control and Perception in Networked and Autonomous Vehicles
Part 5: Machine Perception | Alexandru Kampmann M.Sc. | Dr.-Ing. Bassam Alrifaee

Summary

22

► Allows to build model of environment
using known robot poses

► In practice more complex inverse 
measurement models 

► Dynamic Occupancy Grid Maps
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Object List

Object 𝑜𝑖 = 𝑇 = 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 , 𝐷 = 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 , 𝑅 = [ 𝜃, 𝜙, 𝛽], 𝑐, 𝒙

► 𝑇 center

► 𝐷 dimensions

► 𝑅 orientation

► c object class

► 𝒙 object state (e.g. velocity, acceleration, angular acceleration,…)

► Tracking for maintaining object state over time

► Extracted through application of Machine Learning Algorithms

23



Computer Vision Basics: Classic Problems & Approaches
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What is a camera image?

25

► RGB: three-dimensional array, one channel per color

S. M. Masud Karim, M. S. Rahman and M. I. Hossain, "A new approach for LSB based image steganography using secret key," 14th International Conference on Computer and 

Information Technology (ICCIT 2011), Dhaka, 2011, pp. 286-291.
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Task – Classification 

Map image to a set classes, e.g. {𝑐𝑎𝑡, 𝑑𝑜𝑔, ℎ𝑎𝑡,𝑚𝑢𝑔}

26

CS231n Convolutional Neural Networks for Visual Recognition – Stanford University
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Task – Object Detection (Bounding Boxes)

Where in the image are objects, what class do they belong to?

27

CS231n Convolutional Neural Networks for Visual Recognition – Stanford University
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Task – Semantic Segmentation

Assign class to each pixel (e.g. road surface, vehicle, pedestrian)

28

Cordts, Marius, et al. "The cityscapes dataset for semantic urban scene understanding." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
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Task – Instance Segmentation

Assign class and object instance to each pixel

29

Cordts, Marius, et al. "The cityscapes dataset for semantic urban scene understanding." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
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► How to write an algorithm that handles all edge cases? 

Challenges

30

CS231n Convolutional Neural Networks for Visual Recognition – Stanford University
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Computer Vision - Data Driven Approach

1. Collect Dataset 𝒟 = 𝑦𝑛, 𝑥𝑛 𝑖=1
𝑁

𝑥𝑛 ∈ 𝑋 - input data (Camera image, LIDAR, …)
𝑦𝑛 ∈ 𝒞 - class of 𝑥𝑛

𝒞 = 𝐶𝑗 𝑗=1

𝐿
- classes (plane, car, bird, cat)

2. Choose model 𝑓𝜽 𝑥 : 𝑋 ↦ 𝒞

3. Training: learn “best” parameter 𝜽∗
from 𝒟

4. Deployment: Apply 𝑓𝜽∗ to new input 𝒙

31
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Data Driven Approach – Toy Example  

► Linear classifier 𝑓𝜽 𝒙 = 𝑾𝒙 + 𝒃
▪ 𝒙 – 64x64 input image (grayscale)
▪ 𝜽 = (𝑾, 𝒃) – parameters of classifier
▪ 𝒞 = {𝐶𝑎𝑡, 𝐷𝑜𝑔,𝐻𝑢𝑚𝑎𝑛}

32

64x64 = 4096 Pixel

𝑓𝜽 𝒙 = 𝑾𝒙 + 𝒃 =

Reshape to

1x4096 matrix

3𝑥4096 3𝑥1

100

20

-3

How to find 𝑾 and 𝒃? 

𝐶𝑎𝑡

𝐷𝑜𝑔

𝐻𝑢𝑚𝑎𝑛
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Data Driven Approach - Training

► Training: find ”best” values for 𝑾 and 𝒃

► Loss 𝐽 𝜃 ∈ ℝ measures performance of 𝑓𝜃 on 𝒟𝑇𝑟𝑎𝑖𝑛

𝐽 𝜃 = σ𝑖=1
𝐾 𝑦𝑖 − 𝑓𝜃 𝑥𝑖

2

► Minimize Loss using optimization 

𝜽∗ = 𝑎𝑟𝑔 min
𝜃

𝐽(𝜃)

33

Test set (~20%)            

𝒟𝑇𝑒𝑠𝑡 = 𝑦𝑖 , 𝑥𝑖 𝑖=𝐾+1
𝑁

Training set (~80%)

𝒟𝑇𝑟𝑎𝑖𝑛 = 𝑦𝑖 , 𝑥𝑖 𝑖=1
𝐾

Use-case Dependent! Here: 

Least-Squares,

closed-form solution exists for 

linear 𝑓𝜃
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Data Driven Approach - Testing

► Measure performance of 𝑓𝜃∗ on 𝒟𝑇𝑒𝑠𝑡

𝐽 𝜃∗ = ෍

𝑖=𝐾+1

𝑁

𝑦𝑖 − 𝑓𝜃∗ 𝑥𝑖
2

► Performance of 𝑓𝜃∗on 𝒟𝑡𝑟𝑎𝑖𝑛 may be great, but horrible on 𝒟𝑇𝑒𝑠𝑡

34

Test set (~20%)            

𝒟𝑇𝑒𝑠𝑡 = 𝑦𝑖 , 𝑥𝑖 𝑖=𝐾+1
𝑁

Training set (~80%)

𝒟𝑇𝑟𝑎𝑖𝑛 = 𝑦𝑖 , 𝑥𝑖 𝑖=1
𝐾
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Data Driven Approach – Overfitting

► Choosing the right model 𝑓𝜽 is application specific (trial-and-error)

► Too “simple”: cannot capture complex relationships

► Too “flexible”: danger of overfitting to noise
▪ e.g. Trainig set may be memorized during training 

Robert, Christian. "Machine learning, a probabilistic perspective." (2014)

35
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Computer Vision Pipeline – Before Deep Learning

► Features: Histogram of Oriented Gradients (HOG), SIFT, SURF, ORB, ...

► Problem: features are highly application specific, “hand-crafted features”

36

Camera Image Classifier (e.g., SVN) Object ClassFeature Extraction

N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)



Deep Learning Basics
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► Feature Extraction and Classification performed in one step

► Milestone Paper: Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. 
"Imagenet classification with deep convolutional neural networks." 
Advances in Neural Information Processing Systems. 2012.

Deep Learning Computer Vision Pipeline

38

Camera Image Object ClassDeep Neural Network

Classic Pipeline

Deep Learning Pipeline

Camera Image Classifier Object ClassFeature Extraction
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► Input layer, e.g. RGB Values

► Sequence of hidden layer
▪ Different intermediate layer types: 

Convolutional, Fully-Connected, 
Pooling, …

► Output Layer indicates class

Deep Learning – Neural Network Building Blocks

39
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Deep Learning – Building Blocks

40

Vieira, Sandra, Walter HL Pinaya, and Andrea Mechelli. "Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and 

applications." Neuroscience & Biobehavioral Reviews 74 (2017): 58-75.

► Weights 𝜽 = (𝐰𝟏, … ,𝒘𝒏) learnable 
parameter of the network

► Output is weighted sum of outputs from 
previous layers with activation function

► Non-linear activation function 𝑓
▪ e.g. ReLU 𝑓 𝑥 = max 0, 𝑥

► Output 𝑦𝑖  serves as input to neurons in 
next layer
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Training Neural Networks – Loss Function

► Use-case: Classification with classes C1, … , CL

► Output of final layer 𝑜1, … , 𝑜𝐿

► Normalize output into probability 
distribution using softmax function

𝜎 𝑜𝑖 =
𝑒𝑜𝑖

σ𝑗=1
𝐿 𝑒𝑜𝑗

∈ (0,1)

෍

𝑗=1

𝐿

𝜎(𝑜𝑖) = 1

► Network outputs probability distribution for 
data sample 𝑥𝑖 over all possible classes

41

26

25

20

~0.72

~0.268

~0.001

Softmax
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Training Neural Networks – Loss Function

► Reminder: true class for sample 𝑥𝑖 is 𝑦𝑖

► Predicted probability distribution 𝑃 Ci 𝑥𝑖) = 𝜎 𝑜𝑖

► True probability distribution for sample 𝑄 Ci | 𝑥𝑖 = ቊ
1, 𝐶𝑖 = 𝑦𝑖
0, 𝐶𝑖 ≠ 𝑦𝑖

► Loss-Function is a measure of “distance” between predicted probability 
distribution and “true” probability distribution
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0.72

0.268

0.001

𝑃(𝐶𝑖|𝑥𝑖)

0

1

0

𝑄(𝐶𝑖|𝑥𝑖)

𝐶1

𝐶2 = 𝐶𝐺𝑇

𝐶3

Example
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Training Neural Networks – Cross-Entropy Loss

► Cross-entropy measures distance between two probability distributions 

𝐻𝑥𝑖 𝑄, 𝑃 = − ෍

𝐶𝑖 ∈ 𝒞

𝑄 𝐶𝑖 | 𝑥𝑖 𝑙𝑜𝑔𝑃 𝐶𝑖 | 𝑥𝑖

= −𝑄 𝐶𝐺𝑇 | 𝑥𝑖 log 𝑃 𝐶𝐺𝑇 | 𝑥𝑖 = −log 𝑃 𝐶𝐺𝑇 𝑥𝑖 = −𝒍𝒐𝒈(
𝑒𝑜𝑖

σ𝑗=1
𝐿 𝑒

𝑜𝑗
) 

► Putting it all together, the loss for sample 𝑥𝑖 and given network weights 𝜃 is

ℒ 𝜃, 𝑥𝑖 = −𝒍𝒐𝒈(
𝑒𝑜𝑖

σ𝑗=1
𝐿 𝑒𝑜𝑗

)
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► Apply Gradient Descent to minimize ℒ 𝜃, 𝑥𝑖

► Backpropagation: efficient algorithm for derivative calculation

► Loss function not convex; no guarantee for global minimum

Step Size

Δℒ

Δ𝜃
Gradient of ℒ with respect to 𝜃

𝑙𝑜𝑠𝑠

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
𝛥ℒ

𝛥𝜃𝑡

Deep Learning – Optimization
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Deep Learning – Training Overview

► Choose Neural Network Architecture
▪ many proven architectures, e.g. AlexNet, VGG16, ResNet

► Obtain Dataset 𝒟𝑇𝑟𝑎𝑖𝑛 = 𝑦𝑖 , 𝑥𝑖 𝑖=1
𝐾 , 𝒟𝑇𝑒𝑠𝑡 = 𝑦𝑖 , 𝑥𝑖 𝑖=𝐾+1

𝑁

► Training requires GPU, training/inference on CPU usually too slow

45

Initialize 𝜃 with random values

while(true)

for 𝑦𝑖 , 𝑥𝑖 ∈ 𝒟𝑇𝑟𝑎𝑖𝑛

1. Compute forward pass (inference), i.e. compute network output for 𝑥𝑖

2. Compute derivate of loss 
Δℒ𝑖

Δ𝜃𝑡
using backpropagation

3. Update 𝜃𝑡+1 = 𝜃𝑡 − 𝛼
Δℒ𝑖

Δ𝜃𝑡
(step size in practice ~0.01)

Compute current accuracy on 𝒟𝑇𝑒𝑠𝑡 using current best 𝜃
Terminate if accuracy does not improve, iteration limit, …



Control and Perception in Networked and Autonomous Vehicles
Part 5: Machine Perception | Alexandru Kampmann M.Sc. | Dr.-Ing. Bassam Alrifaee

► Layer consists of learnable convolution filters

► Output of layer 𝑛 − 1 filtered in layer 𝑛, serves as input to layer 𝑛 + 1

► Weights of the filter are learned during training

Deep Learning – Convolutional Layers
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Deep Learning – Convolutional Neural Network

47

https://www.youtube.com/watch?v=f0t-OCG79-U
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► Filter react to specific features (edges, blobs, faces, hands, people,…)

► Tends to become more abstract for layers deeper within the network

Deep Learning – Convolutional Neural Network

48

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on computer vision. Springer, Cham, 2014.
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Case Study – VGG16 Architecture

49

Karen Simonyan and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." ICLR 2015
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► Layer Types
▪ Pooling
▪ Upsampling
▪ Batching
▪ Dropout/Regularization

► Losses
▪ Loss for Semantic Segmentation
▪ Loss for Object Detection (Bounding Boxes)
▪ …

► Training
▪ Transfer Learning
▪ …

Deep Learning – Scratching the Surface
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Deep Learning – Performance

► Deep Neural Networks have become state-of-the-art for perception 
problems

► Many other applications: Visual odometry, LIDAR point clouds, Radar, depth 
from mono camera, prediction, …
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https://devblogs.nvidia.com/mocha-jl-deep-learning-julia/
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► Requires lots of data and GPUs

► State-of-the-art often intractable 
for real-time applications

► No more „Feature Engineering“ 

► End-To-End Learning of Feature 
Extraction & Classifier

► Massive improvements on 
performance of perception systems

► New applications become possible

Deep Learning für Computer Vision

52

Camera Image
Object Class, 

Bounding Box, …
Neural Network

Deep Learning Pipeline
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Open Datasets: Cityscapes, KITTI, Apollo, Oxford RoboCar, …

Frameworks 

► Tensorflow, Keras, PyTorch, …

► GPU for Training/Inference

Open-source culture: many papers release code on github!

Top Conferences: CVPR, ECCV, ICRA, NIPS, ITSC, IV, …

Deep Learning für Computer Vision – How to start?
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Further literature (1)

► Thrun, S., Burgard, W., & Fox, D. (2000). Probabilistic robotics. 

► Robert, C. (2014). Machine learning, a probabilistic perspective.

► Theodoridis, S. (2015). Machine learning: a Bayesian and optimization 
perspective. Academic Press.
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Agenda

► State Estimation

► Kalman Filter

► Hands-on Example



State Estimation
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Definition: State Estimation 

► Open-Loop Observers

► Luenberger Observer

► Kalman Filter

► Extended Kalman Filter

► Unscented Kalman Filter

► Particle Filter

► …

State Estimation

State estimation refers to the process of 

determining or approximating the current internal 

state of a system based on available information. 

This process combines mathematical models, 

input data, and observations to infer the most 

likely state of the system at a given moment, even 

when the complete information might not be directly 

measurable or available. 
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Definition: State Estimation 

► Open-Loop Observers

► Luenberger Observer

► Kalman Filter

► Extended Kalman Filter

► Unscented Kalman Filter

► Particle Filter

► …

State Estimation

State estimation refers to the process of 

determining or approximating the current internal 

state of a system based on available information. 

This process combines mathematical models, 

input data, and observations to infer the most 

likely state of the system at a given moment, even 

when the complete information might not be directly 

measurable or available. 
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Hands-on Example
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Hands-on Example
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Hands-on Example
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Hands-on Example

What do we want to 

know?

“Where is the stone at a 

given point in time?”

• Wanted:

• State estimation of target

• Predict arrival point

What do we know?

“We observe the trajectory 

of the stone?”

• Given:

• Observations of target

There is a catch.

“The observations are not 

perfect.”

• Needed:

• Probabilistic model to 

allow for uncertainties

• Model of the dynamics of 

the target
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Definition: Model dynamics

Model Dynamics of Target

The state of a linear, continues-time system can be 

described with a state equation like

ሶ𝑥 𝑡 = 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢 𝑡 + 𝜔(𝑡)

The system is observed through a linear equation of 

form

𝑧 𝑡 = 𝐻 𝑡 𝑥(𝑡) + 𝜂(𝑡)

𝑥 𝑡

ሶ𝑥 𝑡
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Definition: Model dynamics

Model Dynamics of Target

The state of a linear, discrete-time system can be 

described with a state equation like

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝜔𝑘

The system is observed through a linear equation of 

form

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝜂𝑘

ሶ𝑥8𝑥4
𝑥3

𝑥2

𝑥1

𝑥8



66
Control and Perception in Networked and Autonomous Vehicles
Part 5: State Estimation | Simon Schäfer M.Sc. | Dr.-Ing. Bassam Alrifaee

Definition: Model dynamics

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 +𝜔𝑘
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Definition: Model dynamics

► System state
▪ Estimation of the current state of the target e.g., 

position, velocity, orientation, …

► Motion model
▪ Description of the targets motion

▪ Contains integration

► Systematic disturbance
▪ Disturbances that are known in advance e.g., gravity, 

drag, …

► Random disturbance
▪ Disturbances that are unknow or of random nature 

e.g., wind, friction, …

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 +𝜔𝑘
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Hands-on Example

► System state

▪ Position and velocity: 𝑥 = 𝑠𝑥, 𝑠𝑦, 𝑣𝑥, 𝑣𝑦
𝑇

► Motion model

▪ Constant Velocity: 𝐴 =

1 0 Δ𝑡 0
0 1 0 Δ𝑡
0 0 1 0
0 0 0 1

► Systematic disturbance
• Gravity: 𝐵 = 0 0 0 Δ𝑡 𝑇 −𝑔

► Random disturbance
• Present but unknown
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Hands-on Example

► System state

▪ Position and velocity: 𝑥 = 𝑠𝑥, 𝑠𝑦, 𝑣𝑥, 𝑣𝑦
𝑇

► Motion model

▪ Constant Velocity: 𝐴 =

1 0 Δ𝑡 0
0 1 0 Δ𝑡
0 0 1 0
0 0 0 1

► Systematic disturbance
• Gravity: 𝐵 = 0 0 0 Δ𝑡 𝑇 −𝑔

► Random disturbance
• Present but unknown
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Definition: Model dynamics

Model Dynamics of Target

The state of a linear, discrete-time system can be 

described with a state equation like

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝜔𝑘

The system is observed through a linear equation of 

form

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝜂𝑘

ሶ𝑥8𝑥4
𝑥3

𝑥2

𝑥1

𝑥8
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Definition: Model dynamics

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝜂𝑘
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Definition: Model dynamics

► Observation
▪ Measurement of the current state of the target e.g., 

position, velocity, orientation, …

► Observation model
▪ Description the relation between the measured 

variable and the system state e.g., level of a tank, …

► Random disturbance
▪ Disturbances that are unknow or of random nature 

e.g. sensor noise, reflections, …

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝜂𝑘
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Hands-on Example

► Observation

▪ Position: z = 𝑠𝑥, 𝑠𝑦
𝑇

► Observation model

▪ Mapping: H =
1 0 0 0
0 1 0 0

► Random disturbance
• Present but unknown
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Hands-on Example

► Observation

▪ Position: z = 𝑠𝑥, 𝑠𝑦
𝑇

► Observation model

▪ Mapping: H =
1 0 0 0
0 1 0 0

► Random disturbance
• Present but unknown
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Hands-on Example

► Observation

▪ Position: z = 𝑠𝑥, 𝑠𝑦
𝑇

► Observation model

▪ Mapping: H =
1 0 0 0
0 1 0 0

► Random disturbance
• Present but unknown

► System state

▪ Position and velocity: 𝑥 = 𝑠𝑥, 𝑠𝑦, 𝑣𝑥, 𝑣𝑦
𝑇

► Motion model

▪ Constant Velocity: 𝐴 =

1 0 Δ𝑡 0
0 1 0 Δ𝑡
0 0 1 0
0 0 0 1

► Systematic disturbance
• Gravity: 𝐵 = 0 0 0 Δ𝑡 𝑇 −𝑔

► Random disturbance
• Present but unknown
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Hands-on Example

► Observation

▪ Position: z = 𝑠𝑥, 𝑠𝑦
𝑇

► Observation model

▪ Mapping: H =
1 0 0 0
0 1 0 0

► Random disturbance
• Present but unknown

► System state

▪ Position and velocity: 𝑥 = 𝑠𝑥, 𝑠𝑦, 𝑣𝑥, 𝑣𝑦
𝑇

► Motion model

▪ Constant Velocity: 𝐴 =

1 0 Δ𝑡 0
0 1 0 Δ𝑡
0 0 1 0
0 0 0 1

► Systematic disturbance
• Gravity: 𝐵 = 0 0 0 Δ𝑡 𝑇 −𝑔

► Random disturbance
• Present but unknown
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Hands-on Example
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Hands-on Example
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Hands-on Example
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Hands-on Example

Error of Open-Loop Observers

If a state of a linear, discrete-time system can 

be described with a state equation like:

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘

The evolution of error is given by:

𝑥𝑘+1 − ෤𝑥𝑘+1 = 𝐴𝑘
𝑇 𝑥0 − ෤𝑥0
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Hands-on Example

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 , +𝐵𝑘𝑢𝑘 +𝜔𝑘

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝜂𝑘



Kalman Filter
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Model uncertanties

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 +𝜔𝑘
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Model uncertanties

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 +𝜔𝑘

assuming now that

𝜔𝑘 ⇒𝒩 0,𝑄𝑘
𝑥𝑘 ⇒𝒩 𝑥𝑘, 𝑃𝑘
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Model uncertanties

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 +𝜔𝑘

assuming now that

𝜔𝑘 ⇒𝒩 0,𝑄𝑘
𝑥𝑘 ⇒𝒩 𝑥𝑘, 𝑃𝑘

ො𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘
෠𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝑄𝑘
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Model uncertanties

ො𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘
෠𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝑄𝑘

ሶ𝑥8

𝑥8

𝑥1

𝑥2

𝑥3

𝑥4

𝑃8
𝑃1

𝑃2

𝑃3

𝑃4
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Model uncertanties

ො𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘
෠𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝑄𝑘

ሶ𝑥8

𝑥8

𝑥1

𝑥2

𝑥3

𝑥4

𝑃8
𝑃1

𝑃2

𝑃3

𝑃4

𝑃8

𝑃4

𝑧4

𝑅4
𝑧3

𝑅3

𝑧2

𝑅2

𝑧1

𝑅1

𝑧8

𝑅8
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Model uncertanties

ො𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘
෠𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝑄𝑘

𝐾 = ෠𝑃𝑘+1𝐻
𝑇 𝐻 ෠𝑃𝑘+1𝐻

𝑇 + 𝑅𝑘
−1

𝑥𝑘+1 = ො𝑥𝑘+1 +𝐾 𝑧𝑘 −𝐻ො𝑥𝑘+1
𝑃𝑘+1 = 𝐼 − 𝐾𝐻 ෠𝑃𝑘+1

ሶ𝑥8

𝑥8

𝑃8𝑃8

𝑧8

𝑅8
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Model uncertanties

ሶ𝑥8

𝑥8

𝑃8𝑃8

𝑧8

𝑅8

ො𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘
෠𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝑄𝑘

𝐾 = ෠𝑃𝑘+1𝐻
𝑇 𝐻 ෠𝑃𝑘+1𝐻

𝑇 + 𝑅𝑘
−1

𝑥𝑘+1 = ො𝑥𝑘+1 +𝐾 𝑧𝑘 −𝐻ො𝑥𝑘+1
𝑃𝑘+1 = 𝐼 − 𝐾𝐻 ෠𝑃𝑘+1



90
Control and Perception in Networked and Autonomous Vehicles
Part 5: State Estimation | Simon Schäfer M.Sc. | Dr.-Ing. Bassam Alrifaee

Kalman Filter

► State Estimation 

► Parameter Estimation

► Prediction

► Sensor Data Fusion

► Estimation of non-measurable 

Quantities 

Kalman Filter

A Kalman filter is an “optimal” recursive estimation 

algorithm used to estimate states of a system from 

indirect and uncertain measurements.

Predict

ො𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘
෠𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝑄𝑘

Update

𝐾 = ෠𝑃𝑘+1𝐻
𝑇 𝐻 ෠𝑃𝑘+1𝐻

𝑇 + 𝑅𝑘
−1

𝑥𝑘+1 = ො𝑥𝑘+1 + 𝐾 𝑧𝑘 − 𝐻ො𝑥𝑘+1
𝑃𝑘+1 = 𝐼 − 𝐾𝐻 ෠𝑃𝑘+1
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► Sensor Data Fusion

► Estimation of non-measurable 
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Kalman Filter

A Kalman filter is an “optimal” recursive estimation 

algorithm used to estimate states of a system from 

indirect and uncertain measurements.
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ො𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘
෠𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝑄𝑘

Update

𝐾 = ෠𝑃𝑘+1𝐻
𝑇 𝐻 ෠𝑃𝑘+1𝐻

𝑇 + 𝑅𝑘
−1

𝑥𝑘+1 = ො𝑥𝑘+1 + 𝐾 𝑧𝑘 − 𝐻ො𝑥𝑘+1
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Hands-on Example
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Hands-on Example
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Hands-on Example



Applications in our research
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Homework

► Aid Karl the Little in attacking his vicious 

opponent

► Jupyter notebook on Moodle

► Exercise to understand Kalman Filters and their 

parameters

► No Python code required in the exam



Next Part



Control and Perception in Networked and Autonomous Vehicles
Part 5: Machine Perception | Alexandru Kampmann M.Sc. | Dr.-Ing. Bassam Alrifaee

Software architectures and testing concepts

► With Patrick Scheffe
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