

Lecture Control and Perception in Networked and Autonomous Vehicles

Alexandru Kampmann, M. Sc. | Dr. Bassam Alrifaee | Patrick Scheffe, M. Sc. | Simon Schäfer, M. Sc. Winter Semester 2023/2024

Part 5 Machine Perception

Course contents (CPM group course)

Vehicle models Distributed Predictive Control Control and optimization Network and distribution **CPN** Machine perception Software architectures Service-Oriented and testing concepts

Systems **Real-time Experiments** Architecture

Localization

Case study

^{*}CPM: Cyber-Physical Mobility

Lab architecture

3 Part 5: Machine Perception | Alexandru Kampmann M.Sc. | Dr.-Ing. Bassam Alrifaee

- Sensors & Environment Models
- Computer Vision Basics: Classic Problems & Approaches
- Machine Learning Basics
- Deep Learning Basics

Perception Basics: Sensors & Environment Models

Perception Basics

How Google self-driving car sees a road - https://www.youtube.com/watch?v=MqUbdd7ae54

6 Control and Perception in Networked and Autonomous Vehicles

Part 5: Machine Perception | Alexandru Kampmann M.Sc. | Dr.-Ing. Bassam Alrifaee

Perception Basics

- Environment model with
 dynamic and static elements
- Input form sensors and offline maps (localization)
- Basis for decision making, trajectory planning, control etc.

Sensors – Light Detection and Ranging (LIDAR)

- Illuminate target with laser and measure round-trip-time, wavelength shift
- Point cloud {[x, y, z, i]} with intensity i

- Typical sampling rate 10-15Hz
- Range 100m 300m
- Expensive!

Sensors – Light Detection and Ranging (LIDAR)

Illuminate target with Laser and measure Round-Trip-Time, Wavelength shift

Point cloud {[*x*, *y*, *z*, *i*]} with intensity i

Typical Sampling Rate 10-15Hz

Range 100m – 300m

Expensive!

Sensors – Stereo Vision

- Depth *estimation* from two mono cameras
- Correspondences in Left/Right Images yields depth estimation
- Issues with matching can lead to wrong depth estimates
- In contrast to LIDAR no active distance measurement, but cheaper and higher frequency

Sensors – Radar

- Emmits pulsed electromagnetic wave
- Objects reflect wave back to radar antenna
- Provides accurate measurement of
 - relative position of object
 - range to object
 - velocity

No Sensor is perfect - Combination necessary

LIDAR	Stereo Camera	RADAR
sparse point cloud, becomes worse for larger distances	rich semantic information	no semantic information
precise range measurement	estimated range information	precise range measurement, mostly for metal objects
robust at day and night, but deteriorates in rain or snow	deteriorating performance at night	insensitive to weather conditions
very expensive	comparatively cheap	comparatively cheap
low update rate, 10 Hz	high update rate	high update rate

DARPA Urban Challenge Winner – Boss (2006)

- Model describes environment in a suitable way for further algorithmic processing (i.e. decision making, path planning, control, ...)
- We will learn about two common environment representations
 - Occupancy Grid Mapping
 - Object Lists

- Discretize world in cells of, e.g., 5x5cm
- Each cell is either occupied or free
- Use range finder (LIDAR, Stereo Camera, Ultrasound, ...) to determine state of cell while robot moves through the environment

S. Hoermann, P. Henzler, M. Bach and K. Dietmayer, "Object Detection on Dynamic Occupancy Grid Maps Using Deep Learning and Automatic Label Generation," 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, 2018, pp. 826-833, doi: 10.1109/IVS.2018.8500677.

- Assumptions here: cell is either completely free or occupied, world is static, individual cells are independent of each other
- **Sensor noise**: cell occupancy modelled as binary random variable $m_t^{[x,y]}$
- ► Occupancy measurements are obtained at time t as $z_t^{[x,y]} \sim \{0,1\}$
 - 0 free, 1 occupied

$$m_t^{[x,y]}: \{free, occupied\} \rightarrow \{0,1\}$$

$$p\left(m_{t}^{[x,y]}=1 \mid z_{1:t}^{[x,y]}\right)$$

<i>m</i> _{1,1}	<i>m</i> _{1,2}	<i>m</i> _{1,3}	•••	
		$m_{2,3}$		
		Robot		$m_{x,y}$

17

- ▶ Probabilistic measurement model p $\left(z_t^{[x,y]} \mid m_t^{[x,y]}\right)$
 - $p(z_t^{[x,y]} = 1 \mid m_t^{[x,y]} = 1) \text{True occupied}$
 - $p(z_t^{[x,y]} = 0 | m_t^{[x,y]} = 1) False free$
 - $p\left(z_t^{[x,y]} = 1 \mid m_t^{[x,y]} = 0\right)$ False occupied

•
$$p\left(z_t^{\lfloor x,y \rfloor} = 0 \mid m_t^{\lfloor x,y \rfloor} = 0\right)$$
 – True free

- Probabilistic measurement model $p\left(z_t^{[x,y]} \mid m_t^{[x,y]}\right)$
 - $p(z_t^{[x,y]} = 1 \mid m_t^{[x,y]} = 1) = 0.9$ • $p(z_t^{[x,y]} = 0 \mid m_t^{[x,y]} = 1) = 1 - p(z_t^{[x,y]} = 1 \mid m_t^{[x,y]} = 1) = 0.1$
 - $p\left(z_t^{[x,y]} = 1 \mid m_t^{[x,y]} = 0\right) = 0.2$ • $p\left(z_t^{[x,y]} = 0 \mid m_t^{[x,y]} = 0\right) = 1 - \left|p\left(z_t^{[x,y]} = 1 \mid m_t^{[x,y]} = 0\right)\right| = 0.8$

Occupancy Grid Mapping – Basic Framework

Recursive State Estimation of
$$p\left(m_t^{[x,y]} \mid z_{1:t}^{[x,y]}\right)$$

$$\begin{pmatrix} m_t^{[x,y]} \mid z_{1:t}^{[x,y]} \end{pmatrix} = \frac{p\left(z_t^{[x,y]} \mid m_t^{[x,y]}, z_{1:t-1}^{[x,y]}\right) p\left(m_t^{[x,y]} \mid z_{1:t-1}^{[x,y]}\right)}{p\left(z_t^{[x,y]} \mid z_{1:t-1}^{[x,y]}\right)}$$

$$= p\left(z_t^{[x,y]} \mid m_t^{[x,y]}, z_{1:t-1}^{[x,y]}\right) p\left(m_t^{[x,y]} \mid z_{1:t-1}^{[x,y]}\right) \eta$$

$$= p\left(z_t^{[x,y]} \mid m_t^{[x,y]}\right) p\left(m_t^{[x,y]} \mid z_{1:t-1}^{[x,y]}\right) \eta$$

$$= p\left(z_t^{[x,y]} \mid m_t^{[x,y]}\right) p\left(m_t^{[x,y]} \mid z_{1:t-1}^{[x,y]}\right) \eta$$

Prior from previous timestep

р

Occupancy Grid Mapping – Example

Measurement model

•
$$p(z_t^{[x,y]} = 1 | m_t^{[x,y]} = 1) = 0.9, p(z_t^{[x,y]} = 0 | m_t^{[x,y]} = 1) = 0.1$$

• $p(z_t^{[x,y]} = 1 | m_t^{[x,y]} = 0) = 0.2, p(z_t^{[x,y]} = 0 | m_t^{[x,y]} = 0) = 0.8$

• **Reminder**
$$p\left(m_t^{[x,y]} \mid z_{1:t}^{[x,y]}\right) = p\left(z_t^{[x,y]} \mid m_t^{[x,y]}\right) p\left(m_{t-1}^{[x,y]} \mid z_{1:t-1}^{[x,y]}\right)$$

- Allows to build model of environment using known robot poses
- In practice more complex inverse measurement models
- Dynamic Occupancy Grid Maps

Object List

Object
$$o_i = (T = [t_x, t_y, t_z], D = [d_x, d_y, d_z], R = [\theta, \phi, \beta], c, x)$$

► T center

- D dimensions
- R orientation
- c object class

- x object state (e.g. velocity, acceleration, angular acceleration,...)
- Tracking for maintaining object state over time
- Extracted through application of Machine Learning Algorithms

Computer Vision Basics: Classic Problems & Approaches

What is a camera image?

RGB: three-dimensional array, one channel per color

S. M. Masud Karim, M. S. Rahman and M. I. Hossain, "A new approach for LSB based image steganography using secret key," 14th International Conference on Computer and Information Technology (ICCIT 2011), Dhaka, 2011, pp. 286-291.

Task – Classification

Map image to a set classes, e.g. {*cat*, *dog*, *hat*, *mug*}

CS231n Convolutional Neural Networks for Visual Recognition - Stanford University

b Part 5: Machine Perception | Alexandru Kampmann M.Sc. | Dr.-Ing. Bassam Alrifaee

Task – Object Detection (Bounding Boxes)

Where in the image are objects, what class do they belong to?

CS231n Convolutional Neural Networks for Visual Recognition - Stanford University

Task – Semantic Segmentation

Assign class to each pixel (e.g. road surface, vehicle, pedestrian)

Cordts, Marius, et al. "The cityscapes dataset for semantic urban scene understanding." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Task – Instance Segmentation

Assign **class** and **object instance** to each pixel

Cordts, Marius, et al. "The cityscapes dataset for semantic urban scene understanding." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Challenges

How to write an algorithm that handles all edge cases?

CS231n Convolutional Neural Networks for Visual Recognition - Stanford University

30 Control and Perception in Networked and Autonomous Vehicles Part 5: Machine Perception | Alexandru Kampmann M.Sc. | Dr.-Ing. Bassam Alrifaee

Computer Vision - Data Driven Approach

- 1. Collect Dataset $\mathcal{D} = \{(y_n, x_n)\}_{i=1}^N$ $x_n \in X$ - input data (Camera image, LIDAR, ...) $y_n \in C$ - class of x_n $\mathcal{C} = \{C_j\}_{j=1}^L$ - classes (plane, car, bird, cat)
- 2. Choose model $f_{\theta}(x): X \mapsto \mathcal{C}$
- 3. Training: learn "best" parameter $\boldsymbol{\theta}_*$ from $\mathcal D$
- 4. Deployment: Apply f_{θ_*} to new input x

Data Driven Approach – Toy Example

- Linear classifier $f_{\theta}(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}$
 - x 64x64 input image (grayscale)
 - $\boldsymbol{\theta} = (\boldsymbol{W}, \boldsymbol{b})$ parameters of classifier
 - $C = \{Cat, Dog, Human\}$

How to find *W* and *b*?

Data Driven Approach - Training

Training set (~80%)	
$\mathcal{D}_{Train} = \{(y_i, x_i)\}_{i=1}^K$	

Test set (~20%) $\mathcal{D}_{Test} = \{(y_i, x_i)\}_{i=K+1}^N$

Training: find "best" values for W and b

▶ Loss $J(\theta) \in \mathbb{R}$ measures performance of f_{θ} on \mathcal{D}_{Train}

$$J(\theta) = \sum_{i=1}^{K} (y_i - f_{\theta}(x_i))^2$$

Minimize Loss using optimization

$$\boldsymbol{\theta}_* = \arg\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

Use-case Dependent! Here: Least-Squares, closed-form solution exists for linear f_{θ}

Data Driven Approach - Testing

Training set (~80%)Test set (~20%) $\mathcal{D}_{Train} = \{(y_i, x_i)\}_{i=1}^K$ $\mathcal{D}_{Test} = \{(y_i, x_i)\}_{i=K+1}^N$

► Measure performance of f_{θ_*} on \mathcal{D}_{Test}

$$J(\theta_*) = \sum_{i=K+1}^N \left(y_i - f_{\theta_*}(x_i) \right)^2$$

▶ Performance of f_{θ_*} on \mathcal{D}_{train} may be great, but horrible on \mathcal{D}_{Test}

34 Control and Perception in Networked and Autonomous Vehicles Part 5: Machine Perception | Alexandru Kampmann M.Sc. | Dr.-Ing. Bassam Alrifaee

Data Driven Approach – Overfitting

- > Choosing the right model f_{θ} is application specific (trial-and-error)
- Too "simple": cannot capture complex relationships
- Too "flexible": danger of overfitting to noise
 - e.g. Trainig set may be memorized during training

Robert, Christian. "Machine learning, a probabilistic perspective." (2014)

Computer Vision Pipeline – Before Deep Learning

- Features: Histogram of Oriented Gradients (HOG), SIFT, SURF, ORB, ...
- Problem: features are highly application specific, "hand-crafted features"

N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)

Deep Learning Basics

Deep Learning Computer Vision Pipeline

Feature Extraction and Classification performed in one step

Milestone Paper: Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in Neural Information Processing Systems. 2012.

Deep Learning – Neural Network Building Blocks

- Input layer, e.g. RGB Values
- Sequence of hidden layer
 - Different intermediate layer types: Convolutional, Fully-Connected, Pooling, ...
- Output Layer indicates class

Deep Learning – Building Blocks

- Weights $\theta = (w_1, ..., w_n)$ learnable parameter of the network
- Output is weighted sum of outputs from previous layers with activation function
- Non-linear activation function f
 - e.g. ReLU $f(x) = \max(0, x)$
- Output y_i serves as input to neurons in next layer

Vieira, Sandra, Walter HL Pinaya, and Andrea Mechelli. "Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications." *Neuroscience & Biobehavioral Reviews* 74 (2017): 58-75.

Training Neural Networks – Loss Function

- **Use-case**: Classification with classes C_1, \dots, C_L
- > Output of final layer o_1, \dots, o_L
- Normalize output into probability distribution using softmax function

$$\sigma(o_i) = \frac{e^{o_i}}{\sum_{j=1}^{L} e^{o_j}} \in (0,1)$$
$$\sum_{j=1}^{L} \sigma(o_i) = 1$$

 \mathbf{n} .

Network outputs probability distribution for data sample x_i over all possible classes

Training Neural Networks – Loss Function

> Reminder: true class for sample x_i is y_i

► Predicted probability distribution $P(C_i | x_i) = \sigma(o_i)$

True probability distribution for sample $Q(C_i | x_i) = \begin{cases} 1, C_i = y_i \\ 0, C_i \neq y_i \end{cases}$

Example
$$\begin{array}{c|c} & P(C_i|x_i) & Q(C_i|x_i) \\ & C_1 & 0.72 & 0 \\ C_2 = C_{GT} & 0.268 & 1 \\ & C_3 & 0.001 & 0 \end{array}$$

Loss-Function is a measure of "distance" between predicted probability distribution and "true" probability distribution

Training Neural Networks – Cross-Entropy Loss

Cross-entropy measures distance between two probability distributions

$$H_{x_{i}}(Q,P) = -\sum_{C_{i} \in C} Q(C_{i} \mid x_{i}) \log P(C_{i} \mid x_{i})$$
$$= -Q(C_{GT} \mid x_{i}) \log P(C_{GT} \mid x_{i}) = -\log P(C_{GT} \mid x_{i}) = -\log Q(\frac{e^{o_{i}}}{\sum_{j=1}^{L} e^{o_{j}}})$$

> Putting it all together, the **loss** for sample x_i and given network weights θ is

$$\mathcal{L}(\theta, x_i) = -log(\frac{e^{o_i}}{\sum_{j=1}^{L} e^{o_j}})$$

43 Control and Perception in Networked and Autonomous Vehicles Part 5: Machine Perception | Alexandru Kampmann M.Sc. | Dr.-Ing. Bassam Alrifaee

Deep Learning – Optimization

> Apply Gradient Descent to minimize $\mathcal{L}(\theta, x_i)$

Backpropagation: efficient algorithm for derivative calculation

Loss function not convex; no guarantee for global minimum

Deep Learning – Training Overview

Choose Neural Network Architecture

many proven architectures, e.g. AlexNet, VGG16, ResNet

► Obtain Dataset
$$\mathcal{D}_{Train} = \{(y_i, x_i)\}_{i=1}^K, \mathcal{D}_{Test} = \{(y_i, x_i)\}_{i=K+1}^N$$

Initialize θ with random values while(true)

for $(y_i, x_i) \in \mathcal{D}_{Train}$

- 1. Compute forward pass (inference), i.e. compute network output for x_i
- 2. Compute derivate of loss $\frac{\Delta \mathcal{L}_i}{\Delta \theta_i}$ using backpropagation

3. Update
$$\theta_{t+1} = \theta_t - \alpha \frac{\Delta \mathcal{L}_i}{\Delta \theta_t}$$
 (step size in practice ~0.01)

Compute current accuracy on \mathcal{D}_{Test} using current best θ Terminate if accuracy does not improve, iteration limit, ...

Training requires GPU, training/inference on CPU usually too slow

Deep Learning – Convolutional Layers

- Layer consists of learnable convolution filters
- ▶ Output of layer n 1 filtered in layer n, serves as input to layer n + 1
- Weights of the filter are learned during training

Control and Perception in Networked and Autonomous Vehicles

46 Part 5: Machine Perception | Alexandru Kampmann M.Sc. | Dr.-Ing. Bassam Alrifaee

https://www.youtube.com/watch?v=f0t-OCG79-U

Deep Learning – Convolutional Neural Network

- Filter react to specific features (edges, blobs, faces, hands, people,...)
- Tends to become more abstract for layers deeper within the network

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on computer vision. Springer, Cham, 2014.

Case Study – VGG16 Architecture

Karen Simonyan and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." ICLR 2015

Deep Learning – Scratching the Surface

- Layer Types
 - Pooling
 - Upsampling
 - Batching
 - Dropout/Regularization
- Losses
 - Loss for Semantic Segmentation
 - Loss for Object Detection (Bounding Boxes)

••••

Training

Transfer Learning

••••

Deep Learning – Performance

Deep Neural Networks have become state-of-the-art for perception problems

ILSVRC top-5 error on ImageNet

https://devblogs.nvidia.com/mocha-jl-deep-learning-julia/

Many other applications: Visual odometry, LIDAR point clouds, Radar, depth from mono camera, prediction, ...

Deep Learning für Computer Vision

- No more "Feature Engineering"
- End-To-End Learning of Feature Extraction & Classifier
- Massive improvements on performance of perception systems
- New applications become possible

- Requires lots of data and GPUs
- State-of-the-art often intractable for real-time applications

Deep Learning für Computer Vision – How to start?

Open Datasets: Cityscapes, KITTI, Apollo, Oxford RoboCar, ...

Frameworks

- Tensorflow, Keras, PyTorch, ...
- GPU for Training/Inference

Open-source culture: many papers release code on github!

Top Conferences: CVPR, ECCV, ICRA, NIPS, ITSC, IV, ...

- ▶ Thrun, S., Burgard, W., & Fox, D. (2000). *Probabilistic robotics*.
- Robert, C. (2014). Machine learning, a probabilistic perspective.
- Theodoridis, S. (2015). Machine learning: a Bayesian and optimization perspective. Academic Press.

Lecture Control and Perception in Networked and Autonomous Vehicles

Simon Schäfer, M. Sc. | Dr. Bassam Alrifaee | Patrick Scheffe, M. Sc. Winter Semester 2023/2024

Part 5

State Estimation and Kalman Filter

Agenda

- State Estimation
- Kalman Filter
- Hands-on Example

State Estimation

Definition: State Estimation

- Open-Loop Observers
- Luenberger Observer
- ► Kalman Filter
- Extended Kalman Filter
- Unscented Kalman Filter
- Particle Filter

State Estimation

State estimation refers to the process of determining or approximating the current internal state of a system based on available information. This process combines **mathematical models**, **input data**, and **observations** to infer the most likely state of the system at a given moment, even when the complete information might not be directly measurable or available.

Definition: State Estimation

- Open-Loop Observers
- Luenberger Observer
- Kalman Filter
- Extended Kalman Filter
- Unscented Kalman Filter
- Particle Filter

State Estimation

State estimation refers to the process of determining or approximating the current internal state of a system based on available information. This process combines **mathematical models**, **input data**, and **observations** to infer the most likely state of the system at a given moment, even when the complete information might not be directly measurable or available.

Hands-on Example

60 Control and Perception in Networked and Autonomous Vehicles Part 5: State Estimation | Simon Schäfer M.Sc. | Dr.-Ing. Bassam Alrifaee

What do we want to know?

What do we know?

- "Where is the stone at ak this t"We observe the trajectory given point in time?" / of the stone?"
- Wanted:
 - State estimation of target
 - Predict arrival point

- Given:
 - Observations of target

There is a catch.

"The observations are not perfect."

- Needed:
 - Probabilistic model to allow for uncertainties
 - Model of the dynamics of the target

Model Dynamics of Target

The state of a linear, continues-time system can be described with a state equation like

 $\dot{x}(t) = A(t)x(t) + B(t)u(t) + \omega(t)$

The system is observed through a linear equation of form

$$z(t) = H(t)x(t) + \eta(t)$$

Model Dynamics of Target

The state of a linear, discrete-time system can be described with a state equation like

 $x_{k+1} = A_k x_k + B_k u_k + \omega_k$

The system is observed through a linear equation of form

$$z_k = H_k x_k + \eta_k$$

- System state
 - Estimation of the current state of the target e.g., position, velocity, orientation, ...
- Motion model
 - Description of the targets motion
 - Contains integration
- Systematic disturbance
 - Disturbances that are known in advance e.g., gravity, drag, ...
- Random disturbance
 - Disturbances that are unknow or of random nature e.g., wind, friction, ...

y,

$$x_{k+1} = A_k x_k + B_k u_k + \omega_k$$

 $($ $($ $)$
System state System state System atic disturbance

Hands-on Example

System state

Motion model

- Systematic disturbance
- Random disturbance

Hands-on Example

- System state
 - Position and velocity: $x = [s_x, s_y, v_x, v_y]^T$
- Motion model

Constant Velocity:
$$A = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Systematic disturbance
 - Gravity: $B = [0 \ 0 \ 0 \ \Delta t]^T [-g]$
- Random disturbance
 - Present but unknown

70

Model Dynamics of Target

The state of a linear, discrete-time system can be described with a state equation like

 $x_{k+1} = A_k x_k + B_k u_k + \omega_k$

The system is observed through a linear equation of form

$$z_k = H_k x_k + \eta_k$$

Observation

 Measurement of the current state of the target e.g., position, velocity, orientation, ...

- Observation model
 - Description the relation between the measured variable and the system state e.g., level of a tank, ...
- Random disturbance
 - Disturbances that are unknow or of random nature e.g. sensor noise, reflections, ...

- Observation
- Observation model
 - •

Random disturbance

- Observation
 - Position: $\mathbf{z} = [s_x, s_y]^T$
- Observation model
 - Mapping: $H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
- Random disturbance
 - Present but unknown

- Observation
 - Position: $\mathbf{z} = [s_x, s_y]^T$
- Observation model
 - Mapping: $H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$
- Random disturbance
 - Present but unknown

- System state
 - Position and velocity: $x = [s_x, s_y, v_x, v_y]^T$
- Motion model
 - Constant Velocity: $A = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- Systematic disturbance
 - Gravity: $B = [0 \ 0 \ 0 \ \Delta t]^T [-g]$
- Random disturbance
 - Present but unknown

75

- Random disturbance
 - Present but unknown

- System state
 - Position and velocity: $x = [s_x, s_y, v_x, v_y]^T$
- Motion model
 - Constant Velocity: $A = \begin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- Systematic disturbance
 - Gravity: $B = \begin{bmatrix} 0 & 0 & 0 & \Delta t \end{bmatrix}^T \begin{bmatrix} -g \end{bmatrix}$
- Random disturbance
 - Present but unknown

79

Error of Open-Loop Observers

If a state of a linear, discrete-time system can be described with a state equation like:

 $x_{k+1} = A_k x_k + B_k u_k$

The evolution of error is given by:

Kalman Filter

$$\hat{x}_{k+1} = A_k x_k + B_k u_k$$
$$\hat{P}_{k+1} = A_k P_k A_k^T + Q_k$$

85 Control and Perception in Networked and Autonomous Vehicles Part 5: State Estimation | Simon Schäfer M.Sc. | Dr.-Ing. Bassam Alrifaee

86 Control and Perception in Networked and Autonomous Vehicles Part 5: State Estimation | Simon Schäfer M.Sc. | Dr.-Ing. Bassam Alrifaee

87 Control and Perception in Networked and Autonomous Vehicles Part 5: State Estimation | Simon Schäfer M.Sc. | Dr.-Ing. Bassam Alrifaee

$$\begin{aligned} \hat{x}_{k+1} &= A_k x_k + B_k u_k \\ \hat{P}_{k+1} &= A_k P_k A_k^T + Q_k \end{aligned} \\ & \hat{P}_{k+1} &= A_k P_k A_k^T + Q_k \end{aligned} \\ & \text{Weight based on covariances} \end{aligned} \\ & K &= \hat{P}_{k+1} H^T \big(H \hat{P}_{k+1} H^T + R_k \big)^{-1} \\ & x_{k+1} &= \hat{x}_{k+1} + K (z_k - H \hat{x}_{k+1}) \\ & P_{k+1} &= (I - KH) \hat{P}_{k+1} \end{aligned} \\ & \text{Weighted sum} \end{aligned} \\ & \text{Weighted sum} \end{aligned}$$

Kalman Filter

- State Estimation
- Parameter Estimation
- Prediction
- Sensor Data Fusion
- Estimation of non-measurable Quantities

Kalman Filter

A Kalman filter is an "optimal" recursive estimation algorithm used to estimate states of a system from indirect and uncertain measurements. What sould

Predict

$$\hat{x}_{k+1} = A_k x_k + B_k u_k$$

$$\hat{P}_{k+1} = A_k P_k A_k^T + Q_k$$

Update

$$K = \hat{P}_{k+1}H^{T}(H\hat{P}_{k+1}H^{T} + R_{k})^{-1}$$

$$What we saw$$

$$x_{k+1} = \hat{x}_{k+1} + K(z_{k} - H\hat{x}_{k+1})$$

$$P_{k+1} = (I - KH)\hat{P}_{k+1}$$

Kalman Filter

State Estimation

- Parameter Estimation
- Prediction
- Sensor Data Fusion
- **Estimation of non-measurable Quantities**

Kalman Filter

A Kalman filter is an "optimal" recursive estimation algorithm used to estimate states of a system from indirect and uncertain measurements. What sould

Predict

$$\hat{x}_{k+1} = A_k x_k + B_k u_k$$

$$\hat{P}_{k+1} = A_k P_k A_k^T + Q_k$$

Update

$$K = \hat{P}_{k+1}H^{T}(H\hat{P}_{k+1}H^{T} + R_{k})^{-1}$$

$$What we saw$$

$$x_{k+1} = \hat{x}_{k+1} + K(z_{k} - H\hat{x}_{k+1})$$

$$P_{k+1} = (I - KH)\hat{P}_{k+1}$$

Applications in our research

Homework

- Aid Karl the Little in attacking his vicious opponent
- Jupyter notebook on Moodle
- Exercise to understand Kalman Filters and their parameters
- No Python code required in the exam

Next Part

Software architectures and testing concepts

With Patrick Scheffe

